The mechanical properties and deformation mechanisms of Cu/Nb nanoscale metallic multilayers (NMMs) manufactured by accumulative roll bonding (ARB) are studied at 25 ºC and 400ºC. Cu/Nb NMMs with individual layer thicknesses between 7 and 63 nm were tested by in-situ micropillar compression inside a scanning electron microscope Yield strength, strain-rate sensitivities and activation volumes were obtained from the pillar compression tests. The deformed micropillars were examined under scanning and transmission electron microscopy in order to examine the deformation mechanisms active for different layer thicknesses and temperatures. The analysis suggests that room temperature deformation was determined by dislocation glide at larger layer thicknesses and interfacerelated mechanisms at the thinner layer thicknesses. The high temperature compression tests, in contrast, revealed superior thermo-mechanical stability and strength retention for the NMMs with larger layer thicknesses with deformation controlled by dislocation glide. A remarkable transition in deformation mechanism occurred as the layer thickness decreased, to a deformation response controlled by diffusion processes along the interfaces, which resulted in temperature-induced softening. A deformation mechanism map, in terms of layer thickness and temperature, is proposed from the results obtained in this investigation.
The mechanical properties of Cu/Nb metallic nanolaminates with different layer thickness (7, 16, 34 and 63 nm) were studied by means of micropillar compression tests from room temperature to 400 • C. Both strain-rate jump and constant strain rate tests were carried out and they showed evidence of dynamic strain ageing in the nanolaminates with 7, 16 and 34 nm layer thickness deformed at 200 • C. Dynamic strain ageing was accompanied by a reduction of the strain rate sensitivity to 0, high strength retention at 200 • C and the development of shear localization of the deformation at low strains (5%-6%) that took place along the Nb layers in the nanolaminates. Atom probe tomography of the deformed specimens revealed the presence of O in solid solution in the Nb layers but not in the Cu layers. Thus, diffusion of O atoms to the mobile dislocations in Nb was found to be the origin of the dynamic strain ageing in the Cu/Nb nanolaminates around 200 • C. This mechanism was not found at higher temperature (400 • C) because deformation was mainly controlled by stress-assisted diffusion in the Cu layers. This discovery shows a novel strategy to enhance the strength retention at high temperature of metallic nanolaminates through dynamic strain ageing of one the phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.