BackgroundThe microenvironment plays a major role in the onset and progression of metastasis. Epithelial ovarian cancer (EOC) tends to metastasize to the peritoneal cavity where interactions within the microenvironment might lead to chemoresistance. Mesothelial cells are important actors of the peritoneal homeostasis; we determined their role in the acquisition of chemoresistance of ovarian tumours.Methodology/Principal FindingsWe isolated an original type of stromal cells, referred to as “Hospicells” from ascitis of patients with ovarian carcinosis using limiting dilution. We studied their ability to confer chemoresistance through heterocellular interactions. These stromal cells displayed a new phenotype with positive immunostaining for CD9, CD10, CD29, CD146, CD166 and Multi drug resistance protein. They preferentially interacted with epithelial ovarian cancer cells. This interaction induced chemoresistance to platin and taxans with the implication of multi-drug resistance proteins. This contact enabled EOC cells to capture patches of the Hospicells membrane through oncologic trogocytosis, therefore acquiring their functional P-gp proteins and thus developing chemoresistance. Presence of Hospicells on ovarian cancer tissue micro-array from patients with neo-adjuvant chemotherapy was also significantly associated to chemoresistance.Conclusions/SignificanceThis is the first report of trogocytosis occurring between a cancer cell and an original type of stromal cell. This interaction induced autonomous acquisition of chemoresistance. The presence of stromal cells within patient's tumour might be predictive of chemoresistance. The specific interaction between cancer cells and stromal cells might be targeted during chemotherapy.
High level of fibrinogen in plasma is recognised as an important vascular risk factor. However, it is not known if the increase in fibrinogen is directly responsible for the vascular risk or is a marker of vascular inflammation. Our data strengthen the hypothesis that the fibrinogen level is a marker of vascular disease, since a parallel effect of cytokines on fibrinogen biosynthesis and on vascular injury was noted. Among the cytokines which induce the synthesis of fibrinogen, oncostatin M (OSM) is the most potent cytokine synthesised by activated monocytes for inducing fibrinogen synthesis by Hep G2 cells (human hepatoma cell line). Interestingly at the same concentrations needed for fibrinogen biosynthesis, OSM induces smooth muscle cell proliferation. In contrast, the cytokines IL-4, IL-10 and IL-13 which have a protective effect against vascular injury leading to atherosclerosis, dose dependently down regulate the biosynthesis of fibrinogen. This was due to both a decrease of IL-6 induced fibrinogen synthesis by hepatocytes, evidenced by a decrease in fibrinogen secretion in the medium and beta chain mRNA expression and to an inhibition of production of the hepatocyte-stimulating activity for fibrinogen biosynthesis (HSF) by LPS-activated monocytes. Noteworthingly, IL-10 induces a significant decrease of the production of OSM by LPS-activated monocytes. In situ activation of monocytes by cytokines in the vessel wall could also contribute to the deposition of fibrin(ogen) derivatives, identified as pathogenic factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.