In mature spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY), acetylcholine and the calcium ionophore A-23187 release endothelium-derived contracting factors (EDCFs), cyclooxygenase derivatives that activate thromboxane-endoperoxide (TP) receptors on vascular smooth muscle. The EDCFs released by acetylcholine are most likely prostacyclin and prostaglandin (PG)H(2), whereas those released by A-23187 remain to be identified. Isometric tension and the release of PGs were measured in rings of isolated aortas of WKY and SHR. A-23187 evoked the endothelium-dependent release of prostacyclin, thromboxane A(2), PGF(2alpha), PGE(2), and possibly PGH(2) (PGI(2) >> thromboxane A(2) = PGF(2alpha) = PGE(2)). In SHR aortas, the release of prostacyclin and thromboxane A(2) was significantly larger in response to A-23187 than to acetylcholine. In response to the calcium ionophore, the release of thromboxane A(2) was significantly larger in aortas of SHR than in those of WKY. In both strains of rat, the inhibition of cyclooxygenase-1 prevented the release of PGs and the occurrence of endothelium-dependent contractions. Dazoxiben, the thromboxane synthase inhibitor, abolished the A-23187-dependent production of thromboxane A(2) and inhibited by approximately one-half the endothelium-dependent contractions. U-51605, an inhibitor of PGI synthase, reduced the release of prostacyclin elicited by A-23187 but induced a parallel increase in the production of PGE(2) and PGF(2alpha), suggestive of a PGH(2) spillover, which was associated with the enhancement of the endothelium-dependent contractions. These results indicate that in the aorta of SHR and WKY, the endothelium-dependent contractions elicited by A-23187 involve the release of thromboxane A(2) and prostacyclin with a most likely concomitant contribution of PGH(2).
Gomez E, Schwendemann C, Roger S, Simonet S, Paysant J, Courchay C, Verbeuren TJ, Félétou M. Aging and prostacyclin responses in aorta and platelets from WKY and SHR rats. Am J Physiol Heart Circ Physiol 295: H2198 -H2211, 2008. First published September 26, 2008 doi:10.1152/ajpheart.00507.2008.-In spontaneously hypertensive rat (SHR) aorta, prostacyclin is an endotheliumderived contracting factor contributing to the endothelial dysfunction. This study was designed to determine whether the impairment of the prostacyclin response is influenced by aging and whether such a dysfunction is observed in platelets. Isometric tension was measured in aortic rings, and aggregation was studied in platelet-rich plasma taken from 3-, 6-, and 15-mo-old Wistar-Kyoto rats (WKY) and SHR. In aorta from 3-and 6-mo-old WKY, prostacyclin and beraprost [prostacyclin receptor (IP) agonists] produced relaxations that were enhanced by Triplion (thromboxane-prostanoid receptor antagonist). In 15-mo-old WKY, the relaxations to beraprost were maintained, but not those to prostacyclin. In SHR aorta, prostacyclin or beraprost produced no or minor relaxations, which, in younger SHR, were enhanced by Triplion. In both strains, the relaxations were inhibited by CAY-10441 (IP receptor antagonist). The relaxations to forskolin and isoproterenol were reduced with aging. When compared with those of WKY, the relaxations to isoproterenol were reduced in 3-but not in 6-or 15-mo-old SHR, whereas those to forskolin were consistently diminished at any given age. Whatever the age, prostacyclin and beraprost produced CAY-10441-sensitive inhibitions of ADPinduced platelet aggregation. Both agonists were more potent in SHR than in WKY. Therefore, in platelets from WKY and SHR, the IP receptor-dependent antiaggregant response is functional and maintained during aging. In aorta from WKY those responses are reduced by aging and, in SHR, are already compromised at 3 mo. This dysfunction of the IP receptor is only partially explained by a general dysfunction of the adenylate cyclase pathway. smooth muscle; prostacyclin receptor; endothelium-derived contracting factors; endothelial dysfunction; spontaneously hypertensive rats; Wistar-Kyoto rats ENDOTHELIAL DYSFUNCTION IS a generic term that encompasses many different disorders (15). In the genetic model of spontaneously hypertensive rats (SHR), the endothelial dysfunction is attributed to the release of endothelium-derived contracting factors (EDCF) that counterbalances the effect of nitric oxide (NO) with no or minor alteration in the production of the latter (35). In response to acetylcholine, the endothelium-dependent contraction involves the production of reactive oxygen species, the activation of cyclooxygenase-1, the diffusion of EDCF, and the subsequent stimulation of thromboxane-prostanoid (TP) receptors on vascular smooth muscle. Since inhibitors of thromboxane synthase do not affect the endothelium-dependent contraction to acetylcholine, thromboxane A 2 is not the EDCF released by the muscarinic agonist ...
High level of fibrinogen in plasma is recognised as an important vascular risk factor. However, it is not known if the increase in fibrinogen is directly responsible for the vascular risk or is a marker of vascular inflammation. Our data strengthen the hypothesis that the fibrinogen level is a marker of vascular disease, since a parallel effect of cytokines on fibrinogen biosynthesis and on vascular injury was noted. Among the cytokines which induce the synthesis of fibrinogen, oncostatin M (OSM) is the most potent cytokine synthesised by activated monocytes for inducing fibrinogen synthesis by Hep G2 cells (human hepatoma cell line). Interestingly at the same concentrations needed for fibrinogen biosynthesis, OSM induces smooth muscle cell proliferation. In contrast, the cytokines IL-4, IL-10 and IL-13 which have a protective effect against vascular injury leading to atherosclerosis, dose dependently down regulate the biosynthesis of fibrinogen. This was due to both a decrease of IL-6 induced fibrinogen synthesis by hepatocytes, evidenced by a decrease in fibrinogen secretion in the medium and beta chain mRNA expression and to an inhibition of production of the hepatocyte-stimulating activity for fibrinogen biosynthesis (HSF) by LPS-activated monocytes. Noteworthingly, IL-10 induces a significant decrease of the production of OSM by LPS-activated monocytes. In situ activation of monocytes by cytokines in the vessel wall could also contribute to the deposition of fibrin(ogen) derivatives, identified as pathogenic factor.
High levels of fibrinogen are recognized as an important vascular risk factor; however, it is not known if the increase of plasma fibrinogen is directly responsible for this risk, or is only a marker of vascular inflammation. To support this second hypothesis, Oncostatin M (OSM) is a potent stimulator of fibrinogen biosynthesis and induces smooth muscle cell proliferation. In the same way, we analysed whether interleukin-4 (IL-4), interleukin-10 (IL-10) or interleukin-13 (IL-13), which protect vessel walls from monocytes injuries leading to atherosclerosis, could influence fibrinogen biosynthesis. The two levels of regulation of fibrinogen biosynthesis were tested: firstly, the direct effect of these cytokines on fibrinogen production by the hepatoma cell line Hep G2, and secondly their effect on the secretion of hepatocyte stimulating factor (HSF) activity in the supernatant of lipopolysaccharide (LPS)-activated monocytes. IL-4 and IL-13 added to Hep G2 cells down-regulated both the increase of fibrinogen secretion induced by IL-6 and fibrinogen mRNA levels, this effect being more pronounced when Hep G2 were preincubated with the two cytokines before IL-6 addition. The effect of IL-10 was evidenced only on mRNA expression. IL-10 and IL-13 dose-dependently decrease HSF activity secreted by LPS-activated monocytes, whereas IL-4 had no effect. However, the three cytokines decreased HSF activity when monocytes were incubated with the cytokines before LPS activation. The effects of these cytokines on HSF activity are related to variations of IL-6 and OSM secretion. Our data strengthen the hypothesis that the fibrinogen level is a marker of vascular disease, since cytokines which have a protective vascular effect down-regulate fibrinogen production.
Interactions between endothelial selectins and the leukocyte counter-receptor PSGL1 mediates leukocyte recruitment to inflammation sites. PSGL1 is highly sialylated, making it a potential ligand for Siglec-5, a leukocyte-receptor that recognizes sialic acid structures. Binding assays using soluble Siglec-5 variants (sSiglec-5/C4BP and sSiglec-5/Fc) revealed a dose- and calcium-dependent binding to PSGL1. Pre-treatment of PSGL1 with sialidase reduced Siglec-5 binding by 79 ± 4%. In confocal immune-fluorescence assays, we observed that 50% of Peripheral Blood Mononuclear Cells (PBMCs) simultaneously express PSGL1 and Siglec-5. Duolink-proximity ligation analysis demonstrated that PSGL1 and Siglec-5 are in close proximity (<40 nm) in 31 ± 4% of PBMCs. In vitro perfusion assays revealed that leukocyte-rolling over E- and P-selectin was inhibited by sSiglec-5/Fc or sSiglec-5/C4BP, while adhesion onto VCAM1 was unaffected. When applied to healthy mice (0.8 mg/kg), sSiglec-5/C4BP significantly reduced the number of rolling leukocytes under basal conditions (10.9 ± 3.7 versus 23.5 ± 9.3 leukocytes/field/min for sSiglec-5/C4BP-treated and control mice, respectively; p = 0.0093). Moreover, leukocyte recruitment was inhibited over a 5-h observation period in an in vivo model of TNFalpha-induced inflammation following injection sSiglec-5/C4BP (0.8 mg/kg). Our data identify PSGL1 as a ligand for Siglec-5, and soluble Siglec-5 variants appear efficient in blocking PSGL1-mediated leukocyte rolling and the inflammatory response in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.