Serious games show promise as an effective training method, but such games are complex and few guidelines exist for their effective evaluation. We draw on the design science literature to develop a serious game evaluation framework that emphasizes grounding evaluation in each of four key areastheoretical, technical, empirical, and external. We further recommend that serious game developers assume an iterative, adaptive approach to grounding an evaluation effort in these four areas, emphasizing some areas more than others at different stages of the development cycle. We illustrate our framework using a case study of a large-scale serious game development project. The case study illustrates a holistic approach to serious game evaluation that is valuable to both researchers and practitioners.
Current neural network architectures have no mechanism for explicitly reasoning about item trade-offs. Such trade-offs are important for popular tasks such as recommendation. The main idea of this work is to give neural networks inductive biases that are inspired by economic theories. To this end, we propose Neural Utility Functions, which directly optimize the gradients of a neural network so that they are more consistent with utility theory, a mathematical framework for modeling choice among items. We demonstrate that Neural Utility Functions can recover theoretical item relationships better than vanilla neural networks, analytically show existing neural networks are not quasi-concave and do not inherently reason about trade-offs, and that augmenting existing models with a utility loss function improves recommendation results. The Neural Utility Functions we propose are theoretically motivated, and yield strong empirical results.
Product allocation in retail is the process of placing products throughout a store to connect consumers with relevant products. Discovering a good allocation strategy is challenging due to the scarcity of data and the high cost of experimentation in the physical world. Some work explores Reinforcement learning (RL) as a solution, but these approaches are often limited because of the sim2real problem. Learning policies from logged trajectories of a system is a key step forward for RL in physical systems. Recent work has shown that model-based offline RL can improve the effectiveness of offline policy estimation through uncertainty-penalized exploration. However, existing work assumes a continuous state space and access to a covariance matrix of the environment dynamics, which is not possible in the discrete case. To solve this problem, we propose a Bayesian model-based technique that naturally produces probabilistic estimates of the environment dynamics via the posterior predictive distribution, which we use for uncertainty-penalized exploration. We call our approach Posterior Penalized Offline Policy Optimization (PPOPO). We show that our world model better fits historical data due to informative priors, and that PPOPO outperforms other offline techniques in simulation and against real-world data.
Connecting consumers with relevant products is a very important problem in both online and offline commerce. In physical retail, product placement is an effective way to connect consumers with products. However, selecting product locations within a store can be a tedious process. Moreover, learning important spatial patterns in offline retail is challenging due to the scarcity of data and the high cost of exploration and experimentation in the physical world. To address these challenges, we propose a stochastic model of spatial demand in physical retail. We show that the proposed model is more predictive of demand than existing baselines. We also perform a preliminary study into different automation techniques and show that an optimal product allocation policy can be learned through Deep Q-Learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.