The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80-300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ß3-km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper, the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised.
Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems will modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrain the characteristic amplitude of this background, A c,yr , to be < 1.0×10-15 with 95% confidence. This limit excludes predicted ranges for A c,yr from current models with 91-99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments, and that higher-cadence and shorter-wavelength observations would result in an increased sensitivity to gravitational waves.Studies of the dynamics of stars and gas in nearby galaxies provide strong evidence for the ubiquity of supermassive (> 10 6 solar mass) black holes (SMBHs) (1). Observations of luminous quasars indicate that SMBHs are hosted by galaxies throughout the history of the universe (2) and affect global properties of the host galaxies (3). The prevailing dark energycold dark matter cosmological paradigm predicts that large galaxies are assembled through the hierarchical merging of smaller galaxies. The remnants of mergers can host gravitationally bound binary SMBHs with orbits decaying through the emission of gravitational waves (GWs) (4).Gravitational waves from binary SMBHs, with periods between ~ 0.1 and 30 yr (5), can be detected or constrained by monitoring, for years to decades, a set of rapidly rotating millisecond pulsars (MSPs) distributed throughout our galaxy. Radio emission beams from MSPs are observed as pulses that can be time-tagged with as small as 20 ns precision (6). When traveling across the pulsar-Earth line of sight, GWs induce variations in the arrival times of the pulses (7).The superposition of GWs from the binary SMBH population is a stochastic background (GWB), which is typically characterized by the strain-amplitude spectrum h c (f)=A c,yr [f/(1 yr -1 )] -2/3 , where f is the GW frequency, A c,yr is the characteristic amplitude of the GWB measured at f = 1 yr -1 , predicted to be A c,yr > 10 -15 (5,(8)(9)(10)(11)(12), and -2/3 is the predicted spectral index (5,(8)(9)(10)(11)(12). The GWB will add low-frequency perturbations to pulse arrival times. While the detection of the GWB would confirm the presence of a cosmological population of binary SMBHs, limits on its amplitude constrain models of galaxy and SMBH evolution (8).As part of the Parkes Pulsar Timing Array project to detect GWs (6), we have been monitoring 24 pulsars with the 64-m Parkes radio telescope. We have produced a new data set, using observations taken at a central wavelength of 10 cm and previously reported methods (6,8), that spans 11 yr, which is 3 yr longer than previous data sets analyzed at this wavelength. In addition to having greater sensitivity to the GWB because of the longer duration, the data set was improved by identifying and correc...
High-redshift gamma-ray bursts (GRBs) offer an extraordinary opportunity to study aspects of the early Universe, including the cosmic star formation rate (SFR). Motivated by the two recent highest-z GRBs, GRB 080913 at z ≃ 6.7 and GRB 090423 at z ≃ 8.1, and more than four years of Swift observations, we first confirm that the GRB rate does not trace the SFR in an unbiased way. Correcting for this, we find that the implied SFR to beyond z = 8 is consistent with LBG-based measurements after accounting for unseen galaxies at the faint end of the UV luminosity function. We show that this provides support for the integrated star formation in the range 6 z 8 to have been alone sufficient to reionize the Universe. tralia 7 Throughout, we refer only to "long" gamma-ray bursts. 8 See http://swift.gsfc.nasa.gov/docs/swift/archive/grb table.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.