A reconstituted collagen scaffold impregnated with silver sulfadiazine (SSD) loaded alginate microspheres, capable of delivering the drug in a controlled manner has been developed. SSD-loaded alginate microspheres were prepared by modified water-in-oil emulsion technique through interfacial ionic gelation of alginate using CaCl2. The SSD-loaded microspheres were impregnated in pepsin-solubilized collagen, in situ, while inducing fibrillation and cast as thin scaffold. Morphological features of microspheres and microsphere-impregnated collagen were analyzed through SEM. Distribution homogeneity of impregnated microspheres, their in vitro behavior in (Dulbecco's modified minimal essential media) DMEM, and antibacterial efficiency against ATCC pathogens were determined. Initial drug load of 20% (w/w) with respect to alginate and 40% (v/v) of 2% alginate with respect to oil phase were found to produce microspheres of optimum drug entrapment (3%) and required size range (300-370 microm). In vitro drug release studies from the scaffold showed an initial burst release of 47.5% and a controlled release for 72 h with equilibrium concentration of 68.8%. SSD-loaded microspheres exhibited minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) levels of 32 and 40.2 microg/mL to both K. pneumoniae and E. coli respectively. P. aeruginosa showed MIC and MBC levels of 44.8 and 51.2 microg/mL respectively, while Staphylococcus aureus exhibited MIC and MBC at the same concentration range (57.6 microg/mL). The collagen-based scaffold impregnated with SSD-loaded alginate microspheres can deliver SSD in a controlled fashion, can control infection for extended time period with lesser dressing frequencies, and will enable easier assessment of wound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.