Orthopaedic implants and metal implantation are major technological contributions in the field of orthopaedic surgery. However, bacterial infection and inflammation are predicament issues that subsequently lead to implant failure and second surgery. Ceramic scaffold loaded with gold nanoparticles (Au NPs) posse's antimicrobial and anti-inflammatory properties, which would be more ideal for successful bone implantation and tissue regeneration. Thereby, Hydroxyapatite nanoparticles (nHA), β-Tricalcium Phosphate nanoparticles (nβ-TCP), and Au NPs were used for the fabrication of ceramic scaffold and Au NPs loaded ceramic scaffold. The effects of the Au NPs on the scaffold's mechanical properties, porosity and cell growth have been evaluated. Scanning Electron Microscope [1] and test metric universal testing machine were employed for characterization of the scaffolds. Gold loaded scaffold demonstrated enhanced porosity, degradability and mechanical properties compared with the ceramic scaffold. The porosity of the ceramic and Au NPs loaded ceramic scaffold ranged between 30-50% and 60-75%, respectively, while compressive strength ranged between 10-30mPa and 25-45mPa, respectively.. Scaffold synthesis can be used for implantation in organs that need high load bearing such as femurs, tibia and also as a substrate for Au NPs delivery. To our knowledge, Au NPs have not been incorporate previously with calcium phosphate for fabrication scaffold for bone grafting. Also this study the first report on the effects of Au NPS on the mechanical properties, porosity and degradation rates of ceramic scaffolds.