Muscle spindles provide exquisitely sensitive proprioceptive information regarding joint position and movement. Through passively driven length changes in the muscle-tendon unit (MTU), muscle spindles detect joint rotations because of their in-parallel mechanical linkage to muscle fascicles. In human microneurography studies, muscle fascicles are assumed to follow the MTU and, as such, fascicle length is not measured in such studies. However, under certain mechanical conditions, compliant structures can act to decouple the fascicles, and, therefore, the spindles, from the MTU. Such decoupling may reduce the fidelity by which muscle spindles encode joint position and movement. The aim of the present study was to measure, for the first time, both the changes in firing of single muscle spindle afferents and changes in muscle fascicle length in vivo from the tibialis anterior muscle (TA) during passive rotations about the ankle. Unitary recordings were made from 15 muscle spindle afferents supplying TA via a microelectrode inserted into the common peroneal nerve. Ultrasonography was used to measure the length of an individual fascicle of TA. We saw a strong correlation between fascicle length and firing rate during passive ankle rotations of varying rates (0.1-0.5 Hz) and amplitudes (1-9°). In particular, we saw responses observed at relatively small changes in muscle length that highlight the sensitivity of the TA muscle to small length changes. This study is the first to measure spindle firing and fascicle dynamics in vivo and provides an experimental basis for further understanding the link between fascicle length, MTU length, and spindle firing patterns. Muscle spindles are exquisitely sensitive to changes in muscle length, but recordings from human muscle spindle afferents are usually correlated with joint angle rather than muscle fascicle length. In this study, we monitored both muscle fascicle length and spindle firing from the human tibialis anterior muscle in vivo. Our findings are the first to measure these signals in vivo and provide an experimental basis for exploring this link further.
To maintain a stable, upright posture, the central nervous system (CNS) must integrate sensory information from multiple sources and subsequently generate corrective torque about the ankle joint. Although proprioceptive information from the muscles that cross this joint has been shown to be vital in this process, the specific source of this information remains questionable. Recent research has been focused on the potential role of tibialis anterior (TA) muscle during standing, largely due to the lack of modulation of its activity throughout the sway cycle. Ten young, healthy subjects were asked to stand normally under varying conditions, for periods of 60 s. During these trials, intramuscular electromyographic (EMG) activity and the fascicle length of three distinct anatomical regions of TA were sampled synchronously with kinematic data regarding sway position. In the quiet standing conditions, TA muscle activity was unmodulated and fascicle length changes in each region were tightly coupled with changes in sway position. In the active sway condition, more EMG activity was observed in TA and the fascicle length changes were decoupled from sway position. No regional specific differences in correlation values were observed, contrasting previous observations. The ability of the fascicles to follow sway position builds upon the suggestion that TA is well placed to provide accurate, straightforward sensory information to the CNS. As previously suggested, through reciprocal inhibition, afferent information from TA could help to regulate plantar flexor torque at relevant phases of the sway cycle. The proprioceptive role of TA appears to become complicated during more challenging conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.