The elastic tendinous tissues of distal lower limb muscles can improve the economy of walking and running, amplify the power generated by a muscle and absorb energy. This paper explores the behaviour of the tibialis anterior (TA) muscle and its tendinous tissue during gait, as it absorbs energy during contact and controls foot position during swing. Simultaneous measurements of ultrasound, surface electromyography and 3D motion capture with musculoskeletal modelling from 12 healthy participants were recorded as they walked at preferred and fast walking speeds. We quantified the length changes and velocities of the TA muscle-tendon unit (MTU) and its fascicles across the stride at each speed. Fascicle length changes and velocities were relatively consistent across speeds, although the magnitude of fascicle length change differed between the deep and superficial regions. At contact, when the TA is actively generating force, the fascicles remained relatively isometric as the MTU actively lengthened, presumably stretching the TA tendinous tissue and absorbing energy. This potentially protects the muscle fibres from damage during weight acceptance and allows energy to be returned to the system later in the stride. During early swing, the fascicles and MTU both actively shortened to dorsiflex the foot, clearing the toes from the ground; however, at the fast walking velocity, the majority of shortening occurred through tendinous tissue recoil, highlighting its role in accelerating ankle dorsiflexion to power rapid foot clearance in swing.