Secondary phases, either introduced by alloying or heat treatment, are commonly 31 present in most high-entropy alloys (HEAs). Understanding the formation of secondary 32 phases at high temperatures, and their effect on mechanical properties, is a critical issue 33 that is undertaken in the present study, using the Al x CoCrFeNi (x = 0.3, 0.5, and 0.7) as 34 a model alloy. The in-situ transmission-electron-microscopy (TEM) heating observation, 35 an atom-probe-tomography (APT) study for the reference starting materials (Al 0.3 and 36 Al 0.5 alloys), and thermodynamic calculations for all three alloys, are performed to 37 investigate (1) the aluminum effect on the secondary-phase fractions, (2) the 38 annealing-twinning formation in the face-centered-cubic (FCC) matrix, (3) the 39 strengthening effect of the secondary ordered body-centered-cubic (B2) phase, and (4) 40 the nucleation path of the secondary phase thoroughly. The present work will 41 substantially optimize the alloy design of HEAs and facilitate applications of HEAs to a 42 wide temperature range.
This paper reports on the microstructural evolution of resistance spot welded 1000MPa dual phase steel under two different welding conditions, and their relation to the mechanical performance and failure mechanisms. It is shown that a double pulse weld scheme leads to an enhancement in cross-tension strength compared to single pulse welding. The second pulse subdivides the initial fusion zone of the first pulse into two zones. The inner part is solidified with a columnar structure after the second pulse, whereas with the second pulse the outer layer becomes recrystallized (named as Rex-zone) leading to the formation of an equiaxed structure of prior austenite grains. Characteristics of martensite formed in the Rex-zone and coarse-grained heat affected zone, where the crack initiated and propagated, were investigated using orientation imaging microscopy. It was found that a change in welding scheme from single to double pulse effectively alters the characteristics of martensitic microstructure of weld zones. The results obtained demonstrate that the Rex-zone has a lower fraction of high-angle grain boundaries and coarser structure of Bain groups as opposed to the coarse-grained heat affected zone with large fraction of high-angle grain boundaries and finer Bain groups. Besides, double pulse welding creates softer sub-critical heat affected zone which reduces stress concentration at the nugget edge during cross-tension test. The better mechanical performance of double pulse weld is attributed to the significant softening at subcritical heat affected zone, formation of thick Rex-zone with lower residual strain and high fraction of high-angle grain boundaries and finer Bain groups in the coarse grained heat affected zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.