Context. Herschel observations of nearby molecular clouds suggest that interstellar filaments and prestellar cores represent two fundamental steps in the star formation process. The observations support a picture of low-mass star formation according to which filaments of ∼0.1 pc width form first in the cold interstellar medium, probably as a result of large-scale compression of interstellar matter by supersonic turbulent flows, and then prestellar cores arise from gravitational fragmentation of the densest filaments. Whether this scenario also applies to regions of high-mass star formation is an open question, in part because the resolution of Herschel is insufficient to resolve the inner width of filaments in the nearest regions of massive star formation. Aims. In an effort to characterize the inner width of filaments in high-mass star-forming regions, we imaged the central part of the NGC 6334 complex at a resolution higher by a factor of >3 than Herschel at 350 µm. Methods. We used the large-format bolometer camera ArTéMiS on the APEX telescope and combined the high-resolution ArTéMiS data at 350 µm with Herschel/HOBYS data at 70-500 µm to ensure good sensitivity to a broad range of spatial scales. This allowed us to study the structure of the main narrow filament of the complex with a resolution of 8 or <0.07 pc at d ∼ 1.7 kpc. Results. Our study confirms that this filament is a very dense, massive linear structure with a line mass ranging from ∼500 M /pc to ∼2000 M /pc over nearly 10 pc. It also demonstrates for the first time that its inner width remains as narrow as W ∼ 0.15 ± 0.05 pc all along the filament length, within a factor of <2 of the characteristic 0.1 pc value found with Herschel for lower-mass filaments in the Gould Belt. Conclusions. While it is not completely clear whether the NGC 6334 filament will form massive stars in the future, it is two to three orders of magnitude denser than the majority of filaments observed in Gould Belt clouds, and has a very similar inner width. This points to a common physical mechanism for setting the filament width and suggests that some important structural properties of nearby clouds also hold in high-mass star-forming regions.Key words. stars: formation -circumstellar matter -ISM: clouds -ISM: structure -ISM: individual objects: NGC 6334 -submillimeter: ISM This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX) in ESO program 091.C-0870. APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.The final ArTéMiS+SPIRE 350 µm map (Fig. 1b) is available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
Context. The expansion of H ii regions can trigger the formation of stars. An overdensity of young stellar objects (YSOs) is observed at the edges of H ii regions but the mechanisms that give rise to this phenomenon are not clearly identified. Moreover, it is difficult to establish a causal link between H ii -region expansion and the star formation observed at the edges of these regions. A clear age gradient observed in the spatial distribution of young sources in the surrounding might be a strong argument in favor of triggering. Aims. We aim to characterize the star formation observed at the edges of H ii regions by studying the properties of young stars that form there. We aim to detect young sources, derive their properties and their evolution stage in order to discuss the possible causal link between the first-generation massive stars that form the H ii region and the young sources observed at their edges. Methods. We have observed the Galactic H ii region RCW 120 with Herschel PACS and SPIRE photometers at 70, 100, 160, 250, 350 and 500 µm. We produced temperature and H 2 column density maps and use the getsources algorithm to detect compact sources and measure their fluxes at Herschel wavelengths. We have complemented these fluxes with existing infrared data. Fitting their spectral energy distributions (SEDs) with a modified blackbody model, we derived their envelope dust temperature and envelope mass. We computed their bolometric luminosities and discuss their evolutionary stages. Results. The overall temperatures of the region (without background subtraction) range from 15 K to 24 K. The warmest regions are observed towards the ionized gas. The coldest regions are observed outside the ionized gas and follow the emission of the cold material previously detected at 870 µm and 1.3 mm. The H 2 column density map reveals the distribution of the cold medium to be organized in filaments and highly structured. Column densities range from 7 × 10 21 cm −2 up to 9 × 10 23 cm −2 without background subtraction. The cold regions observed outside the ionized gas are the densest and host star formation when the column density exceeds 2 × 10 22 cm −2 . The most reliable 35 compact sources are discussed. Using exisiting CO data and morphological arguments we show that these sources are likely to be associated with the RCW 120 region. These sources' volume densities range from 2 × 10 5 cm −3 to 10 8 cm −3 . Five sources have envelope masses larger than 50 M and are all observed in high column density regions (>7 × 10 22 cm −2 ). We find that the evolutionary stage of the sources primarily depends on the density of their hosting condensation and is not correlated with the distance to the ionizing star. Conclusions. The Herschel data, with their unique sampling of the far infrared domain, have allowed us to characterize the properties of compact sources observed towards RCW 120 for the first time. We have also been able to determine the envelope temperature, envelope mass and evolutionary stage of these sources. Usin...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.