We evaluated the suitability of various primers for the RAPD (random amplified polymorphic DNA) accurate species identification and strain typing of Aspergillus clinical isolates. Five primers described previously were tested for their discriminatory power in three Aspergillus species (A. fumigatus, A. niger agg. and A. flavus - 23 clinical isolates and 2 reference strains). Clustering of RAPD fingerprints corresponded well with the identification based on morphological features. All isolates were resolved as different strains using the primer R108 and the RAPD protocol optimized for a Robocycler thermal cycler. RAPD with the primer R108 thus can be considered to be a valuable, simple and powerful tool for identification and strain delineation of Aspergillus spp.
BackgroundRapid, easy, economical and accurate species identification of yeasts isolated from clinical samples remains an important challenge for routine microbiological laboratories, because susceptibility to antifungal agents, probability to develop resistance and ability to cause disease vary in different species. To overcome the drawbacks of the currently available techniques we have recently proposed an innovative approach to yeast species identification based on RAPD genotyping and termed McRAPD (Melting curve of RAPD). Here we have evaluated its performance on a broader spectrum of clinically relevant yeast species and also examined the potential of automated and semi-automated interpretation of McRAPD data for yeast species identification.ResultsA simple fully automated algorithm based on normalized melting data identified 80% of the isolates correctly. When this algorithm was supplemented by semi-automated matching of decisive peaks in first derivative plots, 87% of the isolates were identified correctly. However, a computer-aided visual matching of derivative plots showed the best performance with average 98.3% of the accurately identified isolates, almost matching the 99.4% performance of traditional RAPD fingerprinting.ConclusionSince McRAPD technique omits gel electrophoresis and can be performed in a rapid, economical and convenient way, we believe that it can find its place in routine identification of medically important yeasts in advanced diagnostic laboratories that are able to adopt this technique. It can also serve as a broad-range high-throughput technique for epidemiological surveillance.
Growth patterns of Cryptococcus neoformans submerged culture in different culture volumes, intensity of agitation and types of sealing were evaluated to better understand the physiological role of hypoxia response in this yeast. When low intensity agitation was set at high culture volumes and air exchange between the cultivation vessel and external environment was not abolished completely, the cells proliferated slowly but steadily. On the other hand, when the intensity of agitation was high but the vessel was withheld from fresh air supply, the cells first proliferated rapidly, then arrested completely and finally died. Therefore, the central strategy of C. neoformans here seems to lie in its proliferation-rate adjustment to the available oxygen levels and not in its capacity to survive under anoxia. The data support the opinion that the cultures grown under limited aeration (even though not completely withheld from fresh air supply) are much closer to the real cryptococcal life in human tissues than conventional well-aerated exponential cultures.
A case report of ventriculoperitoneal shunt infection caused by Candida lusitaniae in a 6-year-old patient with cerebral astrocytoma and obstructive hydrocephalus is presented briefly with emphasis on the course of antifungal treatment. Seven isolates recovered subsequently from the cerebrospinal fluid were studied retrospectively. To confirm identity, isolates were typed using pulsed-field gel electrophoresis and melting curve of random amplified polymorphic DNA (McRAPD). Further, the ability to form biofilm and its susceptibility to systemic antifungals were evaluated. Using McRAPD, identity of C. lusitaniae isolates showing slight microevolutionary changes in karyotypes was undoubtedly confirmed; successful application of numerical interpretation of McRAPD for typing is demonstrated here for the first time. The strain was also recognized as a strong biofilm producer. Moreover, minimum biofilm inhibitory concentrations were very high, in contrast to low antifungal minimum inhibitory concentrations of isolates. It can be concluded that McRAPD seems to be a simple and reliable method not only for identification but also for typing of yeasts. A ventriculoperitoneal shunt colonized by C. lusitaniae was revealed as the source of this nosocomial infection, and the ability of the strain to form biofilm on its surface likely caused treatment failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.