We have developed a direct regio- and chemoselective method for generating functionalized aromatic cuprate compounds through deprotonative directed ortho cupration using TMP(tetramethylpiperidino)-cuprates (R(TMP)Cu(CN)Li2; R = alkyl, phenyl, or TMP) that are prepared by mixing of CuCN, RLi, and lithium tetramethylpiperidide (LTMP) in THF. Deprotonative cupration of various functionalized benzenes with TMP-cuprate proved effective for the direct generation of o-functionalized copper aromatic and heteroaromatic derivatives, particularly those with electrophilic functional groups, such as cyano, amide, and halogens. Direct cupration, followed by electrophilic trapping, provided a convenient preparative method for 1,2- or 1,2,3-multisubstituted aromatic compounds. The functionalized aromatic cuprate intermediates were also found to undergo oxidation reactions very efficiently and with high regio- and chemoselectivity to afford functionalized phenol, ligand(hetero)-coupling, or homocoupling products by appropriately changing the oxidants and cuprates.
An aluminum ate base, i-Bu(3)Al(TMP)Li, has been designed and developed for regio- and chemoselective direct generation of functionalized aromatic aluminum compounds. Direct alumination followed by electrophilic trapping with I(2), Cu/Pd-catalyzed C-C bond formation, or direct oxidation with molecular O(2) proved to be a powerful tool for the preparation of 1,2- or 1,2,3-multisubstituted aromatic compounds. This deprotonative alumination using i-Bu3Al(TMP)Li was found to be effective in aliphatic chemistry as well, enabling regio- and chemoselective addition of functionalized allylic ethers and carbamates to aliphatic and aromatic aldehydes. A combined multinuclear NMR spectroscopy, X-ray crystallography, and theoretical study showed that the aluminum ate base is a Li/Al bimetallic complex bridged by the nitrogen atom of TMP and the alpha-carbon of an i-Bu ligand and that the Li exclusively serves as a recognition point for electronegative functional groups or coordinative solvents. The mechanism of directed ortho alumination reaction of functionalized aromatic compounds has been studied by NMR and in situ FT-IR spectroscopy, X-ray analysis, and DFT calculation. It has been found that the reaction proceeds with facile formation of an initial adduct of the base and aromatic, followed by deprotonative formation of the functionalized aromatic aluminum compound. Deprotonation by the TMP ligand rather than the isobutyl ligand was suggested and reasoned by means of spectroscopic and theoretical study. The remarkable regioselectivity of the ortho alumination reaction was explained by a coordinative approximation effect between the functional groups and the counter Li(+) ion, enabling stable initial complex formation and creation of a less strained transition state structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.