SummaryThe lbpA gene of Neisseria meningitidis encodes an outer membrane lactoferrin-binding protein and shows homology to the transferrin-binding protein, TbpA. Previously, we have detected part of an open reading frame upstream of lbpA. The putative product of this open reading frame, tentatively designated lbpB, showed homology to the transferrin-binding protein TbpB, suggesting that the lactoferrrin receptor, like the transferrin receptor, consists of two proteins. The complete nucleotide sequence of lbpB was determined. The gene encodes a 77.5 kDa protein, probably a lipoprotein, with homology, 33% identity to the TbpB of N. meningitidis. A unique feature of LbpB is the presence of two stretches of negatively charged residues, which might be involved in lactoferrin binding. Antisera were raised against synthetic peptides corresponding to the C-terminal part of the putative protein and used to demonstrate that the gene is indeed expressed. Consistent with the presence of a putative Fur binding site upstream of the lbpB gene, expression of both LbpA and LbpB was proved to be iron regulated in Western blot experiments. The LbpB protein appeared to be less stable than TbpB in SDScontaining sample buffer. Isogenic mutants lacking either LbpA or LbpB exhibited a reduced ability to bind lactoferrin. In contrast to the lbpB mutant, the lbpA mutant was completely unable to use lactoferrin as a sole source of iron.
A set of isogenic strains was constructed from the meningococcal reference strain H44/76 (B:15:P1.7,16) which differed only in their outer membrane protein (OMP) compositions. First, three isogenic strains lacking the expression of either class 3 (PorB) or class 4 (RmpM) OMP or both were obtained. Second, three isogenic class 1 OMP loop-deficient strains of H44/76 lacking the predicted loop 1 or 4 or both of class 1 OMP (PorA) were obtained. Third, three isogenic class 1 OMP strains which differed by point mutations in the predicted loop 4 of subtype P1.16 were constructed. Strains were constructed through transformation with gene constructs made in Escherichia coli and their homologous recombination into the meningococcal chromosome. This study describes the contribution of one of the six class 1 OMPs, PorA P1.7,16, in the development of bactericidal antibodies after a single immunization of adult volunteers with 50 or 100 g of protein within a hexavalent PorA outer membrane vesicle vaccine. PorA-, PorB-, and RpmM-deficient isogenic strains were used to define the human immune response against PorA. The loop-deficient isogenic strains were used to define the contribution of loops 1 and 4 of PorA in the development of bactericidal anti-PorA antibodies. The isogenic strains carrying a point mutation in loop 4 were used to study the cross-reactivity of the induced bactericidal antibodies against target strains showing microheterogeneity. The results indicate that a single immunization with the hexavalent PorA vaccine induced a dose-dependent bactericidal immune response, which is directed mainly against PorA. The epitope specificity of antibodies is directed mostly against loop 1, although loop 4 and as-yet-unidentified epitopes of PorA P1.7,16 are also involved.
The FrpB protein from pathogenic neisseriae is a 77 kDa iron-regulated outermembrane protein that belongs to the family of TonB-dependent receptors and may have potential as a vaccine component. Comparison between the fipB gene from three different meningococcal strains and a published gonococcal one revealed that the region from residues 350 to 390 displays pronounced sequence variability. In a model for the topology of FrpB in the outer membrane, this region corresponds to loop 7, the longest of the predicted 13 surface-exposed loops. Binding of four out of a total of eight bactericidal monoclonal antibodies to synthetic peptides corresponding to loop 7 showed that their epitopes are located here. The fipB genes from five additional meningococcal strains were cloned and sequenced in this region. Pairwise comparisons showed different degrees of similarity.
The class 1 protein of Neisseria meningitidis is an important component of candidate outer membrane vaccines against meningococcal meningitis. This porin protein contains two variable regions which determine subtype specificity and provide binding sites for bactericidal monoclonal antibodies. To determine the contribution of each of these variable regions in the induction of bactericidal antibodies, a set of isogenic strains differing only in their class 1 epitopes was constructed. This was done by transformation of meningococcal strain H44/76 with cloned class 1 genes and selection of the desired epitope combinations in a colony blot with subtype-specific monoclonal antibodies. When used for the immunization of mice, outer membrane complexes induced bactericidal antibodies only against meningococcal strains sharing at least one of their class 1 epitopes. The results demonstrate that the P1.2 and P1.16 epitopes, normally located in the fourth exposed loop of the protein, efficiently induce bactericidal antibodies independently of the particular sequence in the first variable region. The P1.5 and P1.7 epitopes, normally located in the first exposed loop, were found to induce lower bactericidal titers. Hybrid class 1 outer membrane proteins were constructed by inserting oligonucleotides encoding the P1.7 and P1.16 epitopes into the porA gene. In this way, we obtained a set of strains which carry the P1.5 epitope in loop 1, P1.2 in loop 4, and P1.7 and P1.16 (separately or in combination) in either loop 5 or loop 6. The additional epitopes were found to be exposed at the cell surface. Outer membrane complexes from several of these strains were found to induce a bactericidal response in mice against the inserted epitopes. These results demonstrate that it is feasible to construct meningococcal strains carrying multivalent class 1 proteins in which multiple subtype-specific epitopes are present in different cell surface-exposed loops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.