We describe ASCA, a new method that can deal with complex multivariate datasets containing an underlying experimental design, such as metabolomics datasets. It is a direct generalization of analysis of variance (ANOVA) for univariate data to the multivariate case. The method allows for easy interpretation of the variation induced by the different factors of the design. The method is illustrated with a dataset from a metabolomics experiment with time and dose factors.
Metabolomics involves the unbiased quantitative and qualitative analysis of the complete set of metabolites present in cells, body fluids and tissues (the metabolome). By analyzing differences between metabolomes using biostatistics (multivariate data analysis; pattern recognition), metabolites relevant to a specific phenotypic characteristic can be identified. However, the reliability of the analytical data is a prerequisite for correct biological interpretation in metabolomics analysis. In this review the challenges in quantitative metabolomics analysis with regards to analytical as well as data preprocessing steps are discussed. Recommendations are given on how to optimize and validate comprehensive silylation-based methods from sample extraction and derivatization up to data preprocessing and how to perform quality control during metabolomics studies. The current state of method validation and data preprocessing methods used in published literature are discussed and a perspective on the future research necessary to obtain accurate quantitative data from comprehensive GC-MS data is provided.
Background: Increased dietary cholesterol intake is associated with atherosclerosis. Atherosclerosis development requires a lipid and an inflammatory component. It is unclear where and how the inflammatory component develops. To assess the role of the liver in the evolution of inflammation, we treated ApoE*3Leiden mice with cholesterol-free (Con), low (LC; 0.25%) and high (HC; 1%) cholesterol diets, scored early atherosclerosis and profiled the (patho)physiological state of the liver using novel whole-genome and metabolome technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.