The coherence of state-of-the-art superconducting qubit devices is predominantly limited by two-level-system defects, found primarily at amorphous interface layers. Reducing microwave loss from these interfaces by proper surface treatments is key to push the device performance forward. Here, we study niobium resonators after removing the native oxides with a hydrofluoric acid etch. We investigate the reappearance of microwave losses introduced by surface oxides that grow after exposure to the ambient environment. We find that losses in quantum devices are reduced by an order of magnitude, with internal Qfactors reaching up to 7×10 6 in the single photon regime, when devices are exposed to ambient conditions for 16 min. Furthermore, we observe that Nb2O5 is the only surface oxide that grows significantly within the first 200 hours, following the extended Cabrera-Mott growth model. In this time, microwave losses scale linearly with the Nb2O5 thickness, with an extracted loss tangent tanδNb2O5 = 9.9×10 -3 . Our findings are of particular interest for devices spanning from superconducting qubits, quantum-limited amplifiers, microwave kinetic inductance detectors to single photon detectors.
As the superconducting qubit platform matures towards ever-larger scales in the race towards a practical quantum computer, limitations due to qubit inhomogeneity through lack of process control become apparent. To benefit from the advanced process control in industry-scale CMOS fabrication facilities, different processing methods will be required. In particular, the double-angle evaporation and lift-off techniques used for current, state-of-the-art superconducting qubits are generally incompatible with modern-day manufacturable processes. Here, we demonstrate a fully CMOS compatible qubit fabrication method, and show results from overlap Josephson junction devices with long coherence and relaxation times, on par with the state-of-the-art. We experimentally verify that Argon milling—the critical step during junction fabrication—and a subtractive-etch process nevertheless result in qubits with average qubit energy relaxation times T1 reaching 70 µs, with maximum values exceeding 100 µs. Furthermore, we show that our results are still limited by surface losses and not, crucially, by junction losses. The presented fabrication process, therefore, heralds an important milestone towards a manufacturable 300 mm CMOS process for high-coherence superconducting qubits and has the potential to advance the scaling of superconducting device architectures.
Quantum computers based on solid state qubits have been a subject of rapid development in recent years. In current noisy intermediate-scale quantum technology, each quantum device is controlled and characterised through a dedicated signal line between room temperature and base temperature of a dilution refrigerator. This approach is not scalable and is currently limiting the development of large-scale quantum system integration and quantum device characterisation. Here we demonstrate a custom designed cryo-CMOS multiplexer operating at 32 mK. The multiplexer exhibits excellent microwave properties up to 10 GHz at room and millikelvin temperatures. We have increased the characterisation throughput with the multiplexer by measuring four high-quality factor superconducting resonators using a single input and output line in a dilution refrigerator. Our work lays the foundation for large-scale microwave quantum device characterisation and has the perspective to address the wiring problem of future large-scale quantum computers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.