The influence of additives on the reaction kinetics and for microstructure refinement in LiBH 4-MgH 2 composites is investigated in detail. Indications on the rate limiting processes during the reactions are obtained by comparison of the measured reaction kinetics to simulations with one specific rate limiting process. The kinetics of the sorption reactions are derived from volumetric measurements as well as from in-situ Xray diffraction (XRD) measurements. During desorption, the hydrogen is released at a constant rate, which possibly is correlated to the one-dimensional growth of MgB 2 platelets. In contrast, the kinetic curves of the absorption reactions exhibit the typical shape of contracting-volume controlled kinetics. The microscopical interpretation of kinetic measurements are supported by transmission electron microscopy (TEM) images confirming the formation of additive-nanostructures in the grain boundaries upon cycling. The present investigations underline the importance of the additives as nucleation substrates and the influence of the microstructure on the reaction kinetics.
Amelogenesis imperfecta (AI) can be either isolated or part of a larger syndrome. Junctional epidermolysis bullosa (JEB) is a collection of autosomal-recessive disorders featuring AI associated with skin fragility and other symptoms. JEB is a recessive syndrome usually caused by mutations in both alleles of COL17A1, LAMA3, LAMB3, or LAMC2. In rare cases, heterozygous carriers in JEB kindreds display enamel malformations in the absence of skin fragility (isolated AI). We recruited two kindreds with autosomaldominant amelogenesis imperfecta (ADAI) characterized by generalized severe enamel hypoplasia with deep linear grooves and pits. Whole-exome sequencing of both probands identified novel heterozygous mutations in the last exon of LAMB3 that likely truncated the protein. The mutations perfectly segregated with the enamel defects in both families. In Family 1, an 8-bp deletion (c.3446_3453del GACTGGAG) shifted the reading frame (p.Gly 1149Glufs*8). In Family 2, a single nucleotide substitution (c.C3431A) generated an inframe translation termination codon (p.Ser1144*). We conclude that enamel formation is particularly sensitive to defects in hemidesmosome/basement-membrane complexes and that syndromic and non-syndromic forms of AI can be etiologically related.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.