Abstract. In March 2006 two instrumented aircraft made the first detailed field measurements of biomass burning (BB) emissions in the Northern Hemisphere tropics as part of the MILAGRO project. The aircraft were the National Center for Atmospheric Research C-130 and a University of Montana/US Forest Service Twin Otter. The initial emissions of up to 49 trace gas or particle species were measured from 20 deforestation and crop residue fires on the Yucatan peninsula. This included two trace gases useful as indicators of BB (HCN and acetonitrile) and several rarely, or never before, measured species: OH, peroxyacetic acid, propanoic acid, hydrogen peroxide, methane sulfonic acid, and sulfuric acid. Crop residue fires emitted more organic acids and ammonia than deforestation fires, but the emissions from the main fire types were otherwise fairly similar. The Yucatan firesCorrespondence to: R. J. Yokelson (bob.yokelson@umontana.edu) emitted unusually high amounts of SO 2 and particle chloride, likely due to a strong marine influence on this peninsula. As smoke from one fire aged, the ratio O 3 / CO increased to ∼15% in <∼1 h similar to the fast net production of O 3 in BB plumes observed earlier in Africa. The rapid change in O 3 occurs at a finer spatial scale than is employed in global models and is also faster than predicted by microscale models. Fast increases in PAN, H 2 O 2 , and two organic acids were also observed. The amount of secondary organic acid is larger than the amount of known precursors. Rapid secondary formation of organic and inorganic aerosol was observed with the ratio PM 2.5 / CO more than doubling in ∼1.4±0.7 h. The OH measurements revealed high initial levels (>1×10 7 molecules/cm 3 ) that were likely caused in part by high initial HONO (∼10% of NO y ). Thus, more research is needed to understand critical post emission processes for the second-largest trace gas source on Earth. It is estimated that ∼44 Tg of biomass burned in the Yucatan in the spring Published by Copernicus Publications on behalf of the European Geosciences Union.
[1] Airborne measurements of a large number of oxygenated volatile organic chemicals (OVOC) were carried out in the Pacific troposphere (0.1-12 km) in winter/spring of 2001 (24 February to 10 April). Specifically, these measurements included acetone (CH 3 COCH 3 ), methylethyl ketone (CH 3 COC 2 H 5 , MEK), methanol (CH 3 OH), ethanol (C 2 H 5 OH), acetaldehyde (CH 3 CHO), propionaldehyde (C 2 H 5 CHO), peroxyacylnitrates (PANs) (C n H 2n+1 COO 2 NO 2 ), and organic nitrates (C n H 2n+1 ONO 2 ). Complementary measurements of formaldehyde (HCHO), methyl hydroperoxide (CH 3 OOH), and selected tracers were also available. OVOC were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Background mixing ratios were typically highest in the lower troposphere and declined toward the upper troposphere and the lowermost stratosphere. Their total abundance (SOVOC) was nearly twice that of nonmethane hydrocarbons (SC 2 -C 8 NMHC). Throughout the troposphere, the OH reactivity of OVOC is comparable to that of methane and far exceeds that of NMHC. A comparison of these data with western Pacific observations collected some 7 years earlier (February-March 1994) did not reveal significant differences. Mixing ratios of OVOC were strongly correlated with each other as well as with tracers of fossil and biomass/biofuel combustion. Analysis of the relative enhancement of selected OVOC with respect to CH 3 Cl and CO in 12 plumes originating from fires and sampled in the free troposphere (3-11 km) is used to assess their primary and secondary emissions from biomass combustion. The composition of these plumes also indicates a large shift of reactive nitrogen into the PAN reservoir thereby limiting ozone formation. A three-dimensional global model that uses state of the art chemistry and source information is used to compare measured and simulated mixing ratios of selected OVOC. While there is reasonable agreement in many cases, measured aldehyde concentrations are significantly larger than predicted. At their observed levels, acetaldehyde mixing ratios are shown to be an important source of HCHO (and HO x ) and PAN in the troposphere. On the basis of presently known chemistry, measured mixing ratios of aldehydes and PANs are mutually incompatible. We provide rough estimates of the global sources of several OVOC and conclude that collectively these are extremely large (150-500 Tg C yr À1 ) but remain poorly quantified.
[1] We present measurements of organic aerosol (OA) in urban plumes from Houston and Dallas/Fort Worth as well as in industrial plumes in the Houston area during TexAQS-2006. Consistent with the TexAQS-2000 study, measurements show greater amount of aerosol mass downwind of the industrial centers compared to urban areas. This is likely due to higher emission and processing of volatile organic compounds (VOCs) from the industrial sources along the Houston ship channel. Comparisons of the current measurements with observations from the northeastern (NE) United States indicate that the observed ratios of the enhancement above background in OA, DOA, to the enhancement above background in CO, DCO, downwind of urban centers of Houston and Dallas/Fort Worth are within a factor of 2 of the same values in plumes from urban areas in the NE United States. In the ship channel plumes, DOA/DCO exceeds that in the urban areas by factors ranging from 1.5 to 7. We use a chemical box model to simulate secondary organic aerosol (SOA) formation from anthropogenic and biogenic VOCs in different plumes using recently reported dependencies of SOA yields on VOC/NO x ratios. Modeled SOA to CO enhancement ratios are within a factor of 2 of measurements. The increase in SOA from biogenic VOCs (BVOCs) predicted by the chemical box model as well as by a separate analysis using a Lagrangian particle dispersion model (FLEXPART) is <0.7 mg per standard m 3 (sm À3 ). We find no evidence for a substantial influence of BVOCs on OA formation in our measurements in Houston area.
[1] Formaldehyde (HCHO) columns measured from space provide constraints on emissions of volatile organic compounds (VOCs). Quantitative interpretation requires characterization of errors in HCHO column retrievals and relating these columns to VOC emissions. Retrieval error is mainly in the air mass factor (AMF) which relates fitted backscattered radiances to vertical columns and requires external information on HCHO, aerosols, and clouds. Here we use aircraft data collected over North America and the Atlantic to determine the local relationships between HCHO columns and VOC emissions, calculate AMFs for HCHO retrievals, assess the errors in deriving AMFs with a chemical transport model (GEOS-Chem), and draw conclusions regarding space-based mapping of VOC emissions. We show that isoprene drives observed HCHO column variability over North America; HCHO column data from space can thus be used effectively as a proxy for isoprene emission. From observed HCHO and isoprene profiles we find an HCHO molar yield from isoprene oxidation of 1.6 ± 0.5, consistent with current chemical mechanisms. Clouds are the primary error source in the AMF calculation; errors in the HCHO vertical profile and aerosols have comparatively little effect. The mean bias and 1s uncertainty in the GEOS-Chem AMF calculation increase from <1% and 15% for clear skies to 17% and 24% for half-cloudy scenes. With fitting errors, this gives an overall 1s error in HCHO satellite measurements of 25-31%. Retrieval errors, combined with uncertainties in the HCHO yield from isoprene oxidation, result in a 40% (1s) error in inferring isoprene emissions from HCHO satellite measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.