Background: Cell-free DNA (cf-DNA)-based liquid biopsy is emerging as a revolutionary new method in individualized cancer treatment and prognosis monitoring, although detecting early-stage cancers using cf-DNA remains challenging, partially because of the undefined biological background of cf-DNA. Materials and methods: We investigated somatic mutations in the cf-DNA of 259 cancer-free individuals with a median age of 47 years using an endogenous barcoding duplex method with an ultralow base error rate (2 Â 10 À7) and compared the variant allele frequencies (VAFs) of these mutations between the cf-DNA and the corresponding blood cell DNA. Results: Sixty percent (155/259) of the samples showed at least one nonsynonymous mutation on either of two similar target panels covering 508 and 559 cancer-related genes. For individuals older than 50 years of age, the positive rate increased to 76%. Most cf-DNA mutations were also present at similar VAFs in the paired blood cell DNA. The most frequently mutated genes were driver genes of hematologic malignancies, including DNMT3A, TET2, AXSL1, and JAK2. However, the other 58.4% (192/329) of the mutations were likely 'passenger mutations' of clonal hematopoiesis, including mutations in NOTCH2, FAT3, EXT2, ERBB4, and ARID2, which are driver genes of solid tumors. Conclusion: Hematopoietic clone-derived mutations, including 'driver mutations' and 'passenger mutations', are prevalent in the cf-DNA of both healthy individuals and cancer patients and may be a potential source of false positives in the liquid biopsy. Our results also suggest the ineffectiveness for distinguishing clonal hematopoietic mutations of low VAF (0.1%) from tumorderived mutations using conventional next-generation sequencing of blood cell DNA. However, an error correction model with an ultralow error rate and high coverage depth is required for blood cell DNA sequencing, which is difficult and costly to achieve with current technologies.
The data here, in addition to prove the heterogeneity of hUC-MSCs, confirmed that the stronger therapeutic effects of hUC-MSC1 were attributed to its stronger anti-apoptotic effect, paracrine of trophic factors and potential RPE cell differentiation capacity. Thus, the subset hUC-MSC1, not the other subset or the ungrouped hUC-MSCs should be used for effective treatment of RD.
In our previous studies, mutations in known candidate genes were detected in approximately 50% of Chinese patients with various forms of retinal degeneration. The next stage, identifying additional causative mutations in patients with various forms of genetic eye diseases based on whole exome sequencing of 1220 samples, revealed frequent homozygous or compound heterozygous null mutations in ALMS1, which are known to associate with Alström syndrome as well as individuals diagnosed with Leber congenital amaurosis (LCA) or early-onset severe cone-rod dystrophy (CORD) without signs of systemic phenotypes except that one had a congenital heart abnormity. Sanger sequencing, co-segregation analysis and analysis of normal individuals identified a total of 13 null mutations in ALMS1 in 11 probands, including 4 probands with homozygous mutations and 7 with compound heterozygous mutations. Follow-up examinations revealed absent or mild systemic manifestations of Alström syndrome in those available: 9 of 15 patients in 11 families. These findings not only expand the spectrum of phenotypes associated with ALMS1 mutations but also suggest that ALMS1 should be regarded as a candidate causative gene in patients diagnosed with isolated LCA and early-onset severe CORD.
Our findings demonstrate that, in SI-treated rats, oxidative stress activates STAT3 signaling which up-regulates miR-25 expression, in a very early stage. The increased miR-25 then inhibits ITGAV and PEDF expressions, resulting in RPE phagocytosis dysfunction and then RPE apoptosis and visual impairment as observed in patients with AMD. These findings lead us to a better understanding of AMD pathogenesis, and suggest that miR-25 could be a potential therapeutic target for oxidative stress related RPE diseases, like AMD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.