We have studied the incorporation of heavily supersaturated C into Si using solid-phase epitaxy (SPE) of implanted amorphous layers. The strain in the Si1−xCx/Si heterostructures was measured using rocking curve x-ray diffraction. The microstructure and defect introduction were examined using ion channeling and transmission electron microscopy (TEM). The fraction of C located on substitutional lattice sites in the Si was monitored using Fourier transform infrared absorption spectroscopy and ion channeling at resonance energies. Carbon-depth profiles were monitored by secondary ion mass spectroscopy. The metastable solubility limit for the incorporation of C into Si by SPE was found to be 3.0–7.0×1020 atoms/cm3, which is over three orders of magnitude above the equilibrium solubility at the Si melting point. This limit was determined by the ability to regrow without the introduction of microtwins and stacking faults along {111} planes. We postulate the local bond deformation resulting from the atomic size difference between C and Si leads to the faceting of the amorphous–crystalline interface and allows defect introduction, thus limiting the C supersaturations achieved in Si by SPE. It was also found that the defect density in the regrown alloys could be reduced by higher SPE regrowth temperatures in rapid thermal anneal processing.
We have studied the thermal stability of Si1−yCy/Si (y=0.007 and 0.014) heterostructures formed by solid phase epitaxial regrowth of C implanted layers. The loss of substitutional C was monitored over a temperature range of 810–925 °C using Fourier transform infrared absorbance spectroscopy. Concurrent strain measurements were performed using rocking curve x-ray diffraction to correlate strain relaxation with the loss of substitutional C from the lattice. Loss of C from the lattice was initiated immediately without an incubation period, indicative of a low barrier to C clustering. The activation energy as calculated from a time to 50% completion analysis (3.3±5 eV) is near the activation energy for the diffusion of C in Si. Over the entire temperature range studied, annealing to complete loss of substitutional C resulted in the precipitation of C into β-SiC. The precipitates are nearly spherical with diameters of 2–4 nm. These precipitates have the same crystallographic orientation as the Si matrix but the interfaces between the Si and β-SiC precipitates are incoherent. During the initial stages of precipitation, however, C-rich clusters form which maintain coherency with the Si matrix so the biaxial strain in the heterostructure is partially retained.
The gate oxide films have been grown at a temperature as low as 450 °C by direct oxidation of silicon. Such a low-temperature oxidation has been realized by employing a precision controlled ion bombardment in an Ar/O2 mixed plasma for the surface activation. Perfectly controlled Ar ions give the bombardment energy for the oxide film growth. Dielectric breakdown fields of 10 MV/cm are achieved. Integration in a total low-temperature device process has been demonstrated by fabricating self-aligned Al-gate metal-oxide-silicon field effect transistor (MOSFET) formed without any heat processing over 450 °C. The precise control of the ion bombardment is quite essential for the low-temperature process.
Articles you may be interested inModification of energy band alignment and electric properties of Pt/Ba0.6Sr0.4TiO3/Pt thin-film ferroelectric varactors by Ag impurities at interfaces
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.