Objective To determine whether the use of imaging tests after primary treatment of differentiated thyroid cancer is associated with more treatment for recurrence and fewer deaths from the disease.Design Population based retrospective cohort study.Setting Surveillance Epidemiology and End Results-Medicare database in the United States.Participants 28 220 patients diagnosed with differentiated thyroid cancer between 1998 and 2011. The study cohort was followed up to 2013, with a median follow-up of 69 months.Main outcome measures Treatment for recurrence of differentiated thyroid cancer (additional neck surgery, additional radioactive iodine treatment, or radiotherapy), and deaths due to differentiated thyroid cancer. We conducted propensity score analyses to assess the relation between imaging (neck ultrasound, radioiodine scanning, or positron emission tomography (PET) scanning) and treatment for recurrence (logistic model) and death (Cox proportional hazards model).Results From 1998 until 2011, we saw an increase in incident cancer (rate ratio 1.05, 95% confidence interval 1.05 to 1.06), imaging (1.13, 1.12 to 1.13), and treatment for recurrence (1.01, 1.01 to 1.02); the change in death rate was not significant. In multivariable analysis, use of neck ultrasounds increased the likelihood of additional surgery (odds ratio 2.30, 95% confidence interval 2.05 to 2.58) and additional radioactive iodine treatment (1.45, 1.26 to 1.69). Radioiodine scans were associated with additional surgery (odds ratio 3.39, 95% confidence interval 3.06 to 3.76), additional radioactive iodine treatment (17.83, 14.49 to 22.16), and radiotherapy (1.89, 1.71 to 2.10). Use of PET scans was associated with additional surgery (odds ratio 2.31, 95% confidence interval 2.09 to 2.55), additional radioactive iodine treatment (2.13, 1.89 to 2.40), and radiotherapy (4.98, 4.52 to 5.49). Use of neck ultrasounds or PET scans did not significantly affect disease specific survival (hazard ratio 1.14, 95% confidence interval 0.98 to 1.27, and 0.91, 0.77 to 1.07, respectively). However, radioiodine scans were associated with an improved disease specific survival (hazard ratio 0.70, 95% confidence interval 0.60 to 0.82).Conclusions The marked rise in use of imaging tests after primary treatment of differentiated thyroid cancer has been associated with an increased treatment for recurrence. However, with the exception of radioiodine scans in presumed iodine avid disease, this association has shown no clear improvement in disease specific survival. These findings emphasize the importance of curbing unnecessary imaging and tailoring imaging after primary treatment to patient risk.
Background: Using the Surveillance, Epidemiology, and End Results-Medicare database, a substantial increase was found in the use of positron emission tomography (PET) scans after 2004 in differentiated thyroid cancer (DTC) patients. The reason for the increased utilization of the PET scan was not clear based on available the data. Therefore, the indications for and outcomes of PET scans performed at an academic institution were evaluated. Methods: A retrospective cohort study was performed of DTC patients who underwent surgery at the University of Michigan Health System from 2006 to 2011. After identifying patients who underwent a PET scan, indications, rate of positive PET scans, and impact on management were evaluated. For positive scans, the location of disease was characterized, and presence of disease on other imaging was determined. Results: Of the 585 patients in the cohort, 111 (19%) patients had 200 PET scans performed for evaluation of DTC. Indications for PET scan included: elevated thyroglobulin and negative radioiodine scan in 52 scans (26.0%), thyroglobulin antibodies in 13 scans (6.5%), rising thyroglobulin in 18 scans (9.0%), evaluation of abnormality on other imaging in 22 scans (11.0%), evaluation of extent of disease in 33 scans (16.5%), followup of previous scan in 57 scans (28.5%), other indications in two scans (1.0%), and unclear indications in three scans (1.5%). The PET scan was positive in 124 studies (62.0%); positivity was identified in the thyroid bed on 25 scans, cervical or mediastinal lymph nodes on 105 scans, lung on 28 scans, bone on four scans, and other areas on 14 scans. Therapy following PET scan was surgery in 66 cases (33.0%), chemotherapy or radiation in 23 cases (11.5%), observation in 110 cases (55.0%), and palliative care in one case (0.5%). Disease was identifiable on other imaging in 66% of cases. PET scan results changed management in 59 cases (29.5%). Conclusions: In this academic medical center, the PET scan was utilized in 19% of patients. Indications for the PET scan included conventional indications, such as elevated thyroglobulin with noniodine avid disease, and more controversial uses, such as evaluation of extent of disease or abnormalities on other imaging tests. PET scan results changed management in about 30% of cases.
Background The largest growth in differentiated thyroid cancer (DTC) diagnosis is in low-risk cancers. Trends in imaging after DTC diagnosis are understudied. Hypothesizing a reduction in imaging utilization due to rising low-risk disease, we evaluated post-diagnosis imaging patterns over time and patient characteristics that are associated with likelihood of imaging. Methods Using the Surveillance Epidemiology and End Results-Medicare database, we identified patients diagnosed with localized, regional or distant DTC between 1991 and 2009. We reviewed Medicare claims for neck ultrasound, I-131 scan, or PET scan within 3 years post-diagnosis. Using regression analyses we evaluated trends of imaging utilization. Multivariable logistic regression was used to estimate the likelihood of imaging based on patient characteristics. Results 23,669 patients were included. Patients diagnosed during 2001-2009, compared to 1991-2000, were more likely to have localized disease (p<0.001) and tumors less than 1cm (p<0.001). Use of neck ultrasound and I-131 scan increased in patients with localized disease (p=<0.001 and p=0.003, respectively), regional disease (p<0.001 and p<0.001), and distant metastasis (p=0.001 and p=0.015). Patients diagnosed after 2000 were more likely to undergo neck ultrasound (OR 2.15, 95% CI 2.02-2.28) and I-131 scan (OR 1.44, 95% CI 1.35-1.54). PET scan use from 2005-2009, compared to 1996-2004, increased 32.4-fold (p=<0.001) in localized patients, 13.1-fold (p<0.001) in regional disease patients, and 33.4-fold (p<0.001) in patients with distant DTC. Conclusion Despite a rise in low-risk disease, the use of post-diagnosis imaging increased in all stages of disease. The largest growth was in use of PET scan after 2004.
36 tall girls aged 10.3 to 15.5 years were treated with ethinylestradiol (0.5 mg/day) and norethisterone (15 mg/day). To date treatment for seventeen girls has been completed. Before treatment their bone age ranged from 11.0 to 13.5 years and mean height prediction was 185.19 cm (181.40-193.00 cm). After about two years of treatment their final height averaged 178.96 cm (171.60-183.50 cm). Predicted height was reduced by an average of 6.23 cm. The reduction in final height was significantly greater when therapy was started before a bone age of 12 years. Thirteen girls, re-examined after discontinuation of therapy, all had regular menstrual bleeding within six months. There were no serious or irreversible side effects during the period of observation.
Animal experiments and observations on quantitative growth of human cerebellum suggest a critical period when its development is particularly vulnerable to hypothyroidism. Sixty-seven patients aged 7-24 years with hypothyroidism under long-term treatment were examined for ataxic symptoms. These were found in 24 of 39 patients (60%) hypothyroid before or during the third month of life. Only 4 of 18 patients (20%) hypothyroid later had cerebellar symptoms. Such symptoms could be evidence for the onset of hypothyroidism before or during the 3rd month of life. Seventeen (80%) of mentally retarded patients had cerebellar symptoms compared with 11 (30%) of 45 attending normal school. Even retrospectively, these data might permit a more accurate prognosis of further mental development in hypothyroid children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.