IBM Research undertook a challenge to build a computer system that could compete at the human champion level in real time on the American TV Quiz show, Jeopardy! The extent of the challenge includes fielding a real-time automatic contestant on the show, not merely a laboratory exercise. The Jeopardy! Challenge helped us address requirements that led to the design of the DeepQA architecture and the implementation of Watson. After 3 years of intense research and development by a core team of about 20 researches, Watson is performing at human expert-levels in terms of precision, confidence and speed at the Jeopardy! Quiz show. Our results strongly suggest that DeepQA is an effective and extensible architecture that may be used as a foundation for combining, deploying, evaluating and advancing a wide range of algorithmic techniques to rapidly advance the field of QA.
The SHOP2 planning system received one of the awards for distinguished performance in the 2002 International Planning Competition. This paper describes the features of SHOP2 which enabled it to excel in the competition, especially those aspects of SHOP2 that deal with temporal and metric planning domains.
Two deep parsing components, an English Slot Grammar (ESG) parser and a predicate-argument structure (PAS) builder, provide core linguistic analyses of both the questions and the text content used by IBM Watsoni to find and hypothesize answers. Specifically, these components are fundamental in question analysis, candidate generation, and analysis of passage evidence. As part of the Watson project, ESG was enhanced, and its performance on Jeopardy!i questions and on established reference data was improved. PAS was built on top of ESG to support higher-level analytics. In this paper, we describe these components and illustrate how they are used in a pattern-based relation extraction component of Watson. We also provide quantitative results of evaluating the component-level performance of ESG parsing.
Many questions explicitly indicate the type of answer required. One popular approach to answering those questions is to develop recognizers to identify instances of common answer types (e.g., countries, animals, and food) and consider only answers on those lists. Such a strategy is poorly suited to answering questions from the Jeopardy!i television quiz show. Jeopardy! questions have an extremely broad range of types of answers, and the most frequently occurring types cover only a small fraction of all answers. We present an alternative approach to dealing with answer types. We generate candidate answers without regard to type, and for each candidate, we employ a variety of sources and strategies to judge whether the candidate has the desired type. These sources and strategies provide a set of type coercion scores for each candidate answer. We use these scores to give preference to answers with more evidence of having the right type. Our question-answering system is significantly more accurate with type coercion than it is without type coercion; these components have a combined impact of nearly 5% on the accuracy of the IBM Watsoni question-answering system.
Search in an environment with an uncertain distribution of resources involves a trade-off between exploitation of past discoveries and further exploration. This extends to information foraging, where a knowledge-seeker shifts between reading in depth and studying new domains. To study this decisionmaking process, we examine the reading choices made by one of the most celebrated scientists of the modern era: Charles Darwin. From the full-text of books listed in his chronologically-organized reading journals, we generate topic models to quantify his local (text-to-text) and global (text-to-past) reading decisions using Kullback-Liebler Divergence, a cognitively-validated, information-theoretic measure of relative surprise. Rather than a pattern of surprise-minimization, corresponding to a pure exploitation strategy, Darwin's behavior shifts from early exploitation to later exploration, seeking unusually high levels of cognitive surprise relative to previous eras. These shifts, detected by an unsupervised Bayesian model, correlate with major intellectual epochs of his career as identified both by qualitative scholarship and Darwin's own self-commentary. Our methods allow us to compare his * To whom correspondence should be addressed.Email addresses: jammurdo@indiana.edu (Jaimie Murdock), colallen@indiana.edu (Colin Allen), simon@santafe.edu consumption of texts with their publication order. We find Darwin's consumption more exploratory than the culture's production, suggesting that underneath gradual societal changes are the explorations of individual synthesis and discovery. Our quantitative methods advance the study of cognitive search through a framework for testing interactions between individual and collective behavior and between short-and long-term consumption choices. This novel application of topic modeling to characterize individual reading complements widespread studies of collective scientific behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.