Laser rangefinder performance (i.e., maximum range) is strongly affected by environment due to visibility-dependent laser attenuation in the atmosphere and target reflectivity variations induced by surface condition changes (dry vs. wet). Both factors have their unique spectral features which means that rangefinders operating at different wavelengths are affected by specific environmental changes in a different way. Current state of the art TOF (time of flight) semiconductor laser rangefinders are based mainly on two wavelengths: 905 nm and 1550 nm, which results from atmospheric transmission windows and availability of high power pulsed sources. The paper discusses the scope of maximum range degradation of hypothetical 0.9 μm and 1.5 μm rangefinders due to selected water-related environmental effects. Atmospheric extinction spectra were adapted from Standard Atmosphere Model and reflectance fingerprints of various materials have been measured. It is not the aim of the paper to determine in general which wavelength is superior for laser range finding, since a number of criteria could be considered, but to verify their susceptibility to adverse environmental conditions.
The paper describes practical application of pulsed microchip laser generating at 1535-nm wavelength to a laser rangefinder. The complete prototype of a laser rangefinder was built and investigated in real environmental conditions. The measured performance of the device is discussed. To build the prototype of a laser rangefinder at a reasonable price and shape a number of basic considerations had to be done. These include the mechanical and optical design of a microchip laser and the opto-mechanical construction of the rangefinder.
In this paper, we present a novel configuration of an optical angle-of-incidence (AOI) sensor based on the application of a freeform mirror. The main challenge in designing this mirror was to provide a strictly linear transformation between AOI and the spatial position of the spot created on the linear detector array. Another two goals of this paper were to minimize stray light issues (improve the dynamic range) and create an intermediate focus and lateral shift in the detector position with respect to the plane of incidence. From an optical point of view, the designed mirror can thus be understood as the composition of three components: a high-numerical-aperture (NA) fully achromatic f-theta lens in one cross-section and a perfectly focusing lens, combined with a deviating prism in the second (orthogonal) cross-section. In comparison to the standard “shade” methods, the proposed approach allows a constant angular resolution to be maintained over the entire field of view. The mirror was designed on the basis of fundamental geometrical rules by numerically solving differential problems using an innovative scheme based on the minimization of the specific merit function. The proposed method was practically applied to design a freeform mirror for a 90°/120° field-of-view sensor, showing a satisfactory performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.