We investigated if an adaptive radiotherapy approach based on cone beam CT (CBCT) acquired during radical treatment was feasible and resulted in improved dosimetric outcomes for bladder cancer patients compared to conventional planning and treatment protocol. A secondary aim was to compare a conventional plan with a theoretical online process where positioning is based on soft tissue position on a daily basis and treatment plan choice is based on bladder size. A conventional treatment plan was derived from a planning CT scan in the radical radiotherapy of five patients with muscle invasive bladder cancer. In this offline adaptive protocol using CBCT, the patients had 10 CBCT: daily CBCT for the first five fractions and then CBCT scan on a weekly basis. The first five daily CBCT in each patient were used to create a single adaptive plan for treatment from fraction eight onwards. A different process using the planning CT and the first five daily CBCT was used to create small, average and large bladder volumes, giving rise to small, average and large adaptive bladder treatment plans, respectively. In a retrospective analysis using the CBCT scans, we compared the clinical target volume (CTV) coverage using three protocols: (i) conventional; (ii) offline adaptive; and (iii) online adaptive with choice of 'plan of the day'. Daily CBCT prolonged treatment time by an average of 7 min. Two of the five patients demonstrated such variation in CTV that an offline adaptive plan was used for treatment after the first five CBCT. Comparing the offline adaptive plan with the conventional plan, the CTV coverage improved from a minimum of 60.1 to 94.7% in subsequent weekly CBCT. Using the CBCT data, modelling an online adaptive protocol showed that coverage of the CTV by the 95% prescribed dose line by small, medium and large adaptive plans were 34.9, 67.4 and 90.7% of occasions, respectively. More normal tissue was irradiated using a conventional CTV to planning target volume margin (1.5 cm) compared to an online adaptive process (0.5 cm). An offline adaptive strategy improves dose coverage in certain patients to the CTV and results in a higher conformity index compared to conventional planning. Further research in online adaptive radiation therapy for bladder cancer is indicated.
Radio-labelling of blood cells is an established technique for evaluating in vivo migration of normal cells to sites of pathology such as infection and haemorrhage. A limitation of cellular immunotherapies to induce anti-tumour responses is in part due to the uncertain ability of cellular effectors to reach their intended target. We extended the approach of cell radiolabelling to accurately examine the in vivo distribution of cellular immunotherapy with ex-vivo macrophage activated killer (MAK) cells. We describe the use of two methods of cell labelling for tracking the destination of autologous-derived macrophage activated killer (MAK) cells linked to the bi-specific antibody MDX-H210 delivered either by intravenous (i.v.) or intraperitoneal (i.p.) injection in ten patients with peritoneal relapse of epithelial ovarian carcinoma. Our results demonstrate the feasibility of generating high numbers and purity of GMP quality MAK cells, which can be radiolabelled with (18)F-FDG or (111)In-oxime. MAK cell administration produced minimal infusional toxicity and demonstrated a reproducible pattern of in vivo distribution and active in vivo tracking to sites of known tumour following 8 of 16 i.v. infusions or 4 of 6 i.p. infusions. However, the leakage of (18)F-FDG limited the ability to confidently confirm the tracking of MAK cells to tumour in all cases and improved PET labels are required. The addition of MDX-H210 bispecific antibody did not alter the distribution of cells to tumour sites, but did accelerate the clearance of i.v. administered MAK cells from the pulmonary circulation. This data demonstrates that cellular cancer immunotherapies may be successfully delivered to the sites of active tumour following either i.v. or i.p. injection in a proportion of patients with metastatic cancer. Incorporation of tracking studies in early cycles of cellular immunotherapy may allow selection of patients who demonstrate successful targeting of the immunotherapy for ongoing treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.