▪ Abstract Observations of damped Lyα systems offer a unique window on the neutral-gas reservoirs that gave rise to galaxies at high redshifts. This review focuses on critical properties such as the H I and metal content of the gas and on independent evidence for star formation. Together, these provide an emerging picture of gravitationally bound objects in which accretion of gas from the IGM replenishes gas consumed by star formation. Other properties such as dust content, molecular content, ionized-gas content, gas kinematics, and galaxy identifications are also reviewed. These properties point to a multiphase ISM in which radiative and hydrodynamic feedback processes are present. Numerical simulations and other types of models used to describe damped Lyα systems within the context of galaxy formation are also discussed.
We present evidence for variations in the fine-structure constant from Keck/HIRES spectra of 143 quasar absorption systems over the redshift range 0.2 < z abs < 4.2. This includes 15 new systems, mostly at high-z (z abs > 1.8). Our most robust estimate is a weighted mean ∆α/α = (−0.57 ± 0.11) × 10 −5 . We respond to recent criticisms of the many-multiplet method used to extract these constraints. The most important potential systematic error at low-z is the possibility of very different Mg heavy isotope abundances in the absorption clouds and laboratory: higher abundances of 25,26 Mg in the absorbers may explain the low-z results. Approximately equal mixes of 24 Mg and 25,26 Mg are required. Observations of Galactic stars generally show lower 25,26 Mg isotope fractions at the low metallicities typifying the absorbers. Higher values can be achieved with an enhanced population of intermediate mass stars at high redshift, a possibility at odds with observed absorption system element abundances. At present, all observational evidence is consistent with the varying-α results.Another promising method to search for variation of fundamental constants involves comparing different atomic clocks. Here we calculate the dependence of nuclear magnetic moments on quark masses and obtain limits on the variation of α and mq/ΛQCD from recent atomic clock experiments with hyperfine transitions in H, Rb, Cs, Hg + and an optical transition in Hg + .
Combining high time and frequency resolution full-polarisation spectra of Fast Radio Bursts (FRBs) with knowledge of their host galaxy properties provides an opportunity to study both the emission mechanism generating them and the impact of their propagation through their local environment, host galaxy, and the intergalactic medium. The Australian Square Kilometre Array Pathfinder (ASKAP) telescope has provided the first ensemble of bursts with this information. In this paper, we present the high time and spectral resolution, full polarisation observations of five localised FRBs to complement the results published for the previously studied ASKAP FRB 181112. We find that every FRB is highly polarised, with polarisation fractions ranging from 80 – 100%, and that they are generally dominated by linear polarisation. While some FRBs in our sample exhibit properties associated with an emerging archetype (i.e., repeating or apparently non-repeating), others exhibit characteristic features of both, implying the existence of a continuum of FRB properties. When examined at high time resolution, we find that all FRBs in our sample have evidence for multiple sub-components and for scattering at a level greater than expected from the Milky Way. We find no correlation between the diverse range of FRB properties (e.g., scattering time, intrinsic width, and rotation measure) and any global property of their host galaxy. The most heavily scattered bursts reside in the outskirts of their host galaxies, suggesting that the source-local environment rather than the host interstellar medium is likely the dominant origin of the scattering in our sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.