Because of the development of large-format, wide-field cameras, microlensing surveys are now able to monitor millions of stars with sufficient cadence to detect planets. These new discoveries will span the full range of significance levels including planetary signals too small to be distinguished from the noise. At present, we do not understand where the threshold is for detecting planets. MOA-2011-BLG-293Lb is the first planet to be published from the new surveys, and it also has substantial followup observations. This planet is robustly detected in survey+followup data (∆χ 2 ∼ 5400). The planet/host mass ratio is q = 5.3 ± 0.2 × 10 −3 . The best fit projected separation is s = 0.548 ± 0.005 Einstein radii. However, due to the s ↔ s −1 degeneracy, projected separations of s −1 are only marginally disfavored at ∆χ 2 = 3. A Bayesian estimate of the host mass gives M L = 0.43 +0.27 −0.17 M ⊙ , with a sharp upper limit of M L < 1.2 M ⊙ from upper limits on the lens flux. Hence, the planet mass is m p = 2.4 +1.5 −0.9 M Jup , and the physical projected separation is either r ⊥ ≃ 1.0 AU or r ⊥ ≃ 3.4 AU. We show that survey data alone predict this solution and are able to characterize the planet, but the ∆χ 2 is much smaller (∆χ 2 ∼ 500) than with the followup data. The ∆χ 2 for the survey data alone is smaller than for any other securely detected planet. This event suggests a means to probe the detection threshold, by analyzing a large sample of events like MOA-2011-BLG-293, which have both followup data and high cadence survey data, to provide a guide for the interpretation of pure survey microlensing data.
We report the detection of a cold Neptune m planet =21±2 M ⊕ orbiting a 0.38 M e M dwarf lying 2.5-3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al., which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and followup teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the neartomid-disk and are clearly not in the Galactic bulge.
Using gravitational microlensing, we detected a cold terrestrial planet orbiting one member of a binary star system. The planet has low mass (twice Earth's) and lies projected at ~0.8 astronomical units (AU) from its host star, about the distance between Earth and the Sun. However, the planet's temperature is much lower, <60 Kelvin, because the host star is only 0.10 to 0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host itself orbits a slightly more massive companion with projected separation of 10 to 15 AU. This detection is consistent with such systems being very common. Straightforward modification of current microlensing search strategies could increase sensitivity to planets in binary systems. With more detections, such binary-star planetary systems could constrain models of planet formation and evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.