The central western area of Venezuela has an unequal distribution of precipitation. Due to its agricultural importance, is necessary to plan water accounting and this requires a evaluation of spatial and temporal variability of precipitation and an estimate of local geophysical effect from the relief. In this research we use an iterative computationally lattice approach to perform a confirmatory analysis of the variability and the spatial correlation structure in monthly precipitation stations. Spatial correlograms and pooled empirical semivariogram were applied to evaluate the most appropriate spatial weighting matrix to estimate the Moran’s I. The altitude effect over monthly rainfall was estimated through spatial regression algorithm which determine the predominant spatial process in each slice. A homogeneous spatial stochastic process with positive spatial autocorrelation is evidenced. There is a trend towards a higher frequency of spatial error and spatial auto-regressive processes between the months of June and August whilst there are not dominant process between October and December. This response is caused by the dynamics of the intertropical convergence zone, which generates a seasonal effect on precipitation. These estimations allows decision-making in modeling and will lead to an improvement for analysis and forecasting in areas strongly affected by climate change and water stress.
Se generó un Modelo Digital de Elevación (MDE) del Compartimiento 9, en la Reserva Forestal El Dorado-Tumeremo, utilizando modelado y simulación Geoestadística, se dispuso de las curvas de nivel a escala 1:20.000. Se obtuvo que los datos no son estacionarios por media, ya que se ajustó un modelo polinomial de segundo orden que sigue dirección Este-Oeste. Se ajustó sobre los residuales un modelo de semivariograma Esférico Isotrópico y se ejecutó un Kriging simple residual cuyo error fue de -0.10 m. Finalmente, ante la falta de información se aplicó un modelo de simulación condicional multi-Gaussiana, de la que se obtuvo nuevas realizaciones que reflejen las mismas propiedades estadísticas de la función aleatoria. Los resultados muestran que, el proceso fue altamente efectivo, reconstruyendo la forma del terreno, pero la simulación corresponde con un proceso altamente volumétrico y de elevado costo computacional que requiere de un adecuado criterio estadístico.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.