Topical TA is effective for melasma. This immunohistochemical study found that suppression of ET-1 could be one of the mechanisms of action of TA on melasma.
These findings suggest that senescent changes in keratinocytes are important in the development of SL, even in the absence of rete ridge elongation, and the removal of keratinocytes harbouring melanin could be a possible strategy for SL treatment.
These cases seem to represent a continuum of Riehl melanosis. However, the principal distribution of the pigmentation is a distinguishing feature. Any consistent predisposing factors were not established, but there may be a role for subclinical injury or inflammation as possible causative factors for development of the pigmentation.
Most microbial detection techniques require pretreatment, such as fluorescent labeling and cultivation processes. Here, we propose novel tools for classifying and identifying microorganisms such as molds, yeasts, and bacteria based on their intrinsic dielectric constants in the THz frequency range. We first measured the dielectric constant of films that consisted of a wide range of microbial species, and extracted the values for the individual microbes using the effective medium theory. The dielectric constant of the molds was 1.24-1.85, which was lower than that of bacteria ranging from 2.75-4.11. The yeasts exhibited particularly high dielectric constants reaching 5.63-5.97, which were even higher than that of water. These values were consistent with the results of low-density measurements in an aqueous environment using microfluidic metamaterials. In particular, a blue shift in the metamaterial resonance occurred for molds and bacteria, whereas the molds have higher contrast relative to bacteria in the aqueous environment. By contrast, the deposition of the yeasts induced a red shift because their dielectric constant was higher than that of water. Finally, we measured the dielectric constants of peptidoglycan and polysaccharides such as chitin, α-glucan, and β-glucans (with short and long branches), and confirmed that cell wall composition was the main cause of the observed differences in dielectric constants for different types of microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.