Multiple sclerosis (OMIM 126200) is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability.1 Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals;2,3 and systematic attempts to identify linkage in multiplex families have confirmed that variation within the Major Histocompatibility Complex (MHC) exerts the greatest individual effect on risk.4 Modestly powered Genome-Wide Association Studies (GWAS)5-10 have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects play a key role in disease susceptibility.11 Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the Class I region. Immunologically relevant genes are significantly over-represented amongst those mapping close to the identified loci and particularly implicate T helper cell differentiation in the pathogenesis of multiple sclerosis.
It is well documented that disability accumulation in multiple sclerosis is correlated with axonal injury and that the extent of axonal injury is correlated with the degree of inflammation. However, the interdependence between focal inflammation, diffuse inflammation and neurodegeneration, and their relative contribution to clinical deficits, remains ambiguous. A hypothesis might be that early focal inflammation could be the pivotal event from which all else follows, suggesting the consideration of multiple sclerosis as a two-stage disease. This prompted us to define two phases in the disease course of multiple sclerosis by using two scores on the Kurtzke Disability Status Scale as benchmarks of disability accumulation: an early phase, ‘Phase 1’, from multiple sclerosis clinical onset to irreversible Disability Status Scale 3 and a late phase, ‘Phase 2’, from irreversible Disability Status Scale 3 to irreversible Disability Status Scale 6. Outcome was assessed through five parameters: Phase 1 duration, age at Disability Status Scale 3, time to Disability Status Scale 6 from multiple sclerosis onset, Phase 2 duration and age at Disability Status Scale 6. The first three were calculated among all patients, while the last two were computed only among patients who had reached Disability Status Scale 3. The possible influence of early clinical markers on these outcomes was studied using Kaplan–Meier estimates and Cox models. The analysis was performed in the Rennes multiple sclerosis database (2054 patients, accounting for 26 273 patient-years) as a whole, and according to phenotype at onset (1609 relapsing/445 progressive onset). Our results indicated that the disability progression during Phase 2 was independent of that during Phase 1. Indeed, the median Phase 2 duration was nearly identical (from 6 to 9 years) irrespective of Phase 1 duration (<3, 3 to <6, 6 to <10, 10 to <15, ≥15 years) in the whole population, and in both phenotypes. In relapsing onset multiple sclerosis, gender, age at onset, residual deficit after the first relapse and relapses during the first 2 years of multiple sclerosis were found to be independent predictive factors of disability progression, but only during Phase 1. Our findings demonstrate that multiple sclerosis disability progression follows a two-stage process, with a first stage probably dependant on focal inflammation and a second stage probably independent of current focal inflammation. This concept has obvious implications for the future therapeutic strategy in multiple sclerosis.
No abstract
This method, which can be improved by using more sensitive sequences with a high-field-strength system, should be competitive with biopsy for the diagnosis of substantial liver iron overload.
Hereditary spastic paraplegias (HSP) constitute a heterogeneous group of neurodegenerative disorders characterized at least by slowly progressive spasticity of the lower limbs. Mutations in REEP1 were recently associated with a pure dominant HSP, SPG31. We sequenced all exons of REEP1 and searched for rearrangements by multiplex ligation-dependent probe amplification (MLPA) in a large panel of 175 unrelated HSP index patients from kindreds with dominant inheritance (AD-HSP), with either pure (n = 102) or complicated (n = 73) forms of the disease, after exclusion of other known HSP genes. We identified 12 different heterozygous mutations, including two exon deletions, associated with either a pure or a complex phenotype. The overall mutation rate in our clinically heterogeneous sample was 4.5% in French families with AD-HSP. The phenotype was restricted to pyramidal signs in the lower limbs in most patients but nine had a complex phenotype associating axonal peripheral neuropathy (= 5/11 patients) including a Silver-like syndrome in one patient, and less frequently cerebellar ataxia, tremor, dementia. Interestingly, we evidenced abnormal mitochondrial network organization in fibroblasts of one patient in addition to defective mitochondrial energy production in both fibroblasts and muscle, but whether these anomalies are directly or indirectly related to the mutations remains uncertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.