Noise properties of active matrix, flat-panel imagers under conditions relevant to diagnostic radiology are investigated. These studies focus on imagers based upon arrays with pixels incorporating a discrete photodiode coupled to a thin-film transistor, both fabricated from hydrogenated amorphous silicon. These optically sensitive arrays are operated with an overlying x-ray converter to allow indirect detection of incident x rays. External electronics, including gate driver circuits and preamplification circuits, are also required to operate the arrays. A theoretical model describing the signal and noise transfer properties of the imagers under conditions relevant to diagnostic radiography, fluoroscopy, and mammography is developed. This frequency-dependent model is based upon a cascaded systems analysis wherein the imager is conceptually divided into a series of stages having intrinsic gain and spreading properties. Predictions from the model are compared with x-ray sensitivity and noise measurements obtained from individual pixels from an imager with a pixel format of 1536 x 1920 pixels at a pixel pitch of 127 microns. The model is shown to be in excellent agreement with measurements obtained with diagnostic x rays using various phosphor screens. The model is used to explore the potential performance of existing and hypothetical imagers for application in radiography, fluoroscopy, and mammography as a function of exposure, additive noise, and fill factor. These theoretical predictions suggest that imagers of this general design incorporating a CsI: Tl intensifying screen can be optimized to provide detective quantum efficiency (DQE) superior to existing screen-film and storage phosphor systems for general radiography and mammography. For fluoroscopy, the model predicts that with further optimization of a-Si:H imagers, DQE performance approaching that of the best x-ray image intensifier systems may be possible. The results of this analysis suggest strategies for future improvements of this imaging technology.
The performance of an indirect-detection, active matrix flat-panel imager (FPI) at diagnostic energies is reported in terms of measured and theoretical signal size, noise power spectrum (NPS), and detective quantum efficiency (DQE). Based upon a 1536 x 1920 pixel, 127 microns pitch array of a-Si:H thin-film transistors and photodiodes, the FPI was developed as a prototype for examination of the potential of flat-panel technology in diagnostic x-ray imaging. The signal size per unit exposure (x-ray sensitivity) was measured for the FPI incorporating five commercially available Gd2O2S:Tb converting screens at energies 70-120 kVp. One-dimensional and two-dimensional NPS and DQE were measured for the FPI incorporating three such converters and as a function of the incident exposure. The measurements support the hypothesis that FPIs have significant potential for application in diagnostic radiology. A cascaded systems model that has shown good agreement with measured individual pixel signal and noise properties is employed to describe the performance of various FPI designs and configurations under a variety of diagnostic imaging conditions. Theoretical x-ray sensitivity, NPS, and DQE are compared to empirical results, and good agreement is observed in each case. The model is used to describe the potential performance of FPIs incorporating a recently developed, enhanced array that is commercially available and has been proposed for testing and application in diagnostic radiography and fluoroscopy. Under conditions corresponding to chest radiography, the analysis suggests that such systems can potentially meet or even exceed the DQE performance of existing technology, such as screen-film and storage phosphor systems; however, under conditions corresponding to general fluoroscopy, the typical exposure per frame is such that the DQE is limited by the total system gain and additive electronic noise. The cascaded systems analysis provides a valuable means of identifying the limiting stages of the imaging system, a tool for system optimization, and a guide for developing strategies of FPI design for various imaging applications.
A dedicated extremity cone-beam CT scanner capable of imaging upper and lower extremities (including weight-bearing examinations) provides sufficient image quality and favorable dose characteristics to warrant further evaluation for clinical use.
Signal properties of the first large-area, high resolution, active matrix, flat-panel imager are reported. The imager is based on an array of 1536 x 1920 pixels with a pixel-to-pixel pitch of 127 microns. Each pixel consists of a discrete amorphous silicon n-i-p photodiode coupled to an amorphous silicon thin-film transistor. The imager detects incident x rays indirectly by means of an intensifying screen placed over the array. External acquisition electronics send control signals to the array and process analog imaging signals from the pixels. Considerations for operation of the imager in both fluoroscopic and radiographic modes are detailed and empirical signal performance data are presented with an emphasis on exploring similarities and differences between the two modes. Measurements which characterize the performance of the imager were performed as a function of operational parameters in the absence or presence of illumination from a light-emitting diode or x rays. These measurements include characterization of the drift and magnitude of the pixel dark signal, the size of the pixel switching transient, the temporal behavior of pixel sampling and the implied maximum frame rate, the dependence of relative pixel efficiency and pixel response on photodiode reverse bias voltage and operational mode, the degree of linearity of pixel response, and the trapping and release of charge from metastable states in the photodiodes. In addition, X-ray sensitivity as a function of energy for a variety of phosphor screens for both fluoroscopic and radiographic operation is reported. Example images of a line-pair pattern and an anthropomorphic phantom in each mode are presented along with a radiographic image of a human hand. General and specific improvements in imager design are described and anticipated developments are discussed. This represents the first systematic investigation of the operation and properties in both radiographic and fluoroscopic modes of an imager incorporating such an array.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.