The device yield of molecular junctions has become a major issue for the practical application of molecular electronics based on a crossbar system of a metal-molecule-metal (MMM) junction. As the thickness of self-assembled monolayers (SAMs) is typically 1-2 nm, it is difficult to avoid electrical shorts due to the penetration of top metal particles into the SAMs. A simple and effective strategy for the creation of a reliable molecular junction using a thickness-controlled bilayer with a bifunctional heterostructure is presented. In the MMM device, the Au adlayer on the molecular layer is spontaneously formed with deposition of the top Au metals and the sandwiched molecular layer maintains the quality of the SAMs. This method greatly reduces electrical shorts by preventing the diffusion of the top metal electrode and offsetting the surface roughness of the bottom metal electrode, resulting in a device yield of more than 90%.
Amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with a solution-processed polymeric gate dielectric of cross-linked poly(4-vinylphenol) (c-PVP) film were fabricated on a poly(ethylene terephthalate) (PET) substrate on which an a-IGZO film, as the active channel layer, was deposited by radio frequency (RF) sputtering. The entire TFT fabrication process was carried out at a temperature below 110 °C. The device exhibited an on/off ratio of 1.5×106 and a high field-effect mobility of 10.2 cm2 V-1 s-1, which is, to our knowledge, the best result ever achieved among a-IGZO TFTs with polymeric gate dielectrics on a plastic substrate.
We fabricated a flexible bottom-emitting white organic light-emitting diode (BEWOLED) with a structure of PET/Ni/Ag/Ni (3/6/3 nm)/ NPB (50 nm)/mCP (10 nm)/7% FIrpic:mCP (10 nm)/3% Ir(pq)(2) acac:TPBi (5 nm)/7% FIrpic:TPBi (5 nm)/TPBi (10 nm)/Liq (2 nm)/ Al (100 nm). To improve the performance of the BEWOLED, a multilayered metal stack anode of Ni/Ag/Ni treated with oxygen plasma for 60 sec was introduced into the OLED devices. The Ni/Ag/Ni anode effectively enhanced the probability of hole-electron recombination due to an efficient hole injection into and charge balance in an emitting layer. By comparing with a reference WOLED using ITO on glass, it is verified that the flexible BEWOLED showed a similar or better electroluminescence (EL) performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.