Background and purposeTotal knee replacements (TKRs) are being increasingly performed in patients aged ≤ 65 years who often have high physical demands. We investigated the relation between age of the patient and prosthesis survival following primary TKR using nationwide data collected from the Finnish Arthroplasty Register.MaterialsFrom Jan 1, 1997 through Dec 31, 2003, 32,019 TKRs for primary or secondary osteoarthritis were reported to the Finnish Arthroplasty Register. The TKRs were followed until the end of 2004. During the follow-up, 909 TKRs were revised, 205 (23%) due to infection and 704 for other reasons.ResultsCrude overall implant survival improved with increasing age between the ages of 40 and 80. The 5-year survival rates were 92% and 95% in patients aged ≤ 55 and 56–65 years, respectively, compared to 97% in patients who were > 65 years of age (p < 0.001). The difference was mainly attributable to reasons other than infections. Sex, diagnosis, type of TKR (condylar, constrained, or hinge), use of patellar component, and fixation method were also associated with higher revision rates. However, the differences in prosthesis survival between the age groups ≤ 55, 56–65, and > 65 years remained after adjustment for these factors (p < 0.001).InterpretationYoung age impairs the prognosis of TKR and is associated with increased revision rates for non-infectious reasons. Diagnosis, sex, type of TKR, use of patellar component, and fixation method partly explain the differences, but the effects of physical activity, patient demands, and obesity on implant survival in younger patients warrant further research.
Halide double perovskites have gained significant attention, owing to their composition of low-toxicity elements, stability in air and long charge-carrier lifetimes. However, most double perovskites, including Cs2AgBiBr6, have wide bandgaps,...
Time-of-flight elastic recoil detection (ToF-ERD) analysis software has been developed. The software combines a Python-language graphical front-end with a C code computing back-end in a user-friendly way. The software uses a list of coincident time-offlight-energy (ToF-E) events as an input. The ToF calibration can be determined with a simple graphical procedure. The graphical interface allows the user to select different elements and isotopes from a ToF-E histogram and to convert the selections to individual elemental energy and depth profiles. The resulting sample composition can be presented as relative or absolute concentrations by integrating the depth profiles over user-defined ranges. Beam induced composition changes can be studied by displaying the eventbased data in fractions relative to the substrate reference data. Optional angular input data allows for kinematic correction of the depth profiles. This open source software is distributed under the GPL license for Linux, Mac, and Windows environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.