Microgrids constitute an attractive solution for the electrification of areas where grid extension is not technically feasible or prohibitively expensive. In recent years, national governments have implemented various support policies to encourage the deployment of renewable energy systems (RES) and microgrid hybrid-powered systems. A fundamental aspect during the design and disposition of these types of units is the determination of the optimal configuration and sizing of each power generation component. Furthermore, the optimal design of microgrids is strongly dependent on technological parameters, local meteorological conditions, among other factors. In this context, this paper investigates the effects of different policy measures on the optimal configuration of microgrids functioning in islanded mode. A computable model is employed to carry out a set of sensitivity analyses and assess the impact of capital and fuel subsidies on the levelized cost of electricity of various systems. The model employed for this study minimizes the total life cycle costs (TLCC) over the 20-year lifetime of the microgrid project. Besides, as meteorological conditions are crucial parameters to consider while designing microgrids, a sensitivity analysis is conducted to examine the effect of wind speed and solar irradiation on the capacities of each distributed generation units. Our results indicate that capital subsidies, as well as fuel price variations, have a substantial effect on the final design of microgrid systems for rural electrification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.