Abstract-A filter method of feature selection based on mutual information, called normalized mutual information feature selection (NMIFS), is presented. NMIFS is an enhancement over Battiti's MIFS, MIFS-U, and mRMR methods. The average normalized mutual information is proposed as a measure of redundancy among features. NMIFS outperformed MIFS, MIFS-U, and mRMR on several artificial and benchmark data sets without requiring a user-defined parameter. In addition, NMIFS is combined with a genetic algorithm to form a hybrid filter/wrapper method called GAMIFS. This includes an initialization procedure and a mutation operator based on NMIFS to speed up the convergence of the genetic algorithm. GAMIFS overcomes the limitations of incremental search algorithms that are unable to find dependencies between groups of features.Index Terms-Feature selection, genetic algorithms, multilayer perceptron (MLP) neural networks, normalized mutual information (MI).
This study investigates the effect of class imbalance in training data when developing neural network classifiers for computer aided medical diagnosis. The investigation is performed in the presence of other characteristics that are typical among medical data, namely small training sample size, large number of features, and correlations between features. Two methods of neural network training are explored: classical backpropagation (BP) and particle swarm optimization (PSO) with clinically relevant training criteria. An experimental study is performed using simulated data and the conclusions are further validated on real clinical data for breast cancer diagnosis. The results show that classifier performance deteriorates with even modest class imbalance in the training data. Further, it is shown that BP is generally preferable over PSO for imbalanced training data especially with small data sample and large number of features. Finally, it is shown that there is no clear preference between oversampling and no compensation approach and some guidance is provided regarding a proper selection.
A model of a multivalued associative memory is presented. This memory has the form of a fully connected attractor neural network composed of multistate complex-valued neurons. Such a network is able to perform the task of storing and recalling gray-scale images. It is also shown that the complex-valued fully connected neural network may be considered as a generalization of a Hopfield network containing real-valued neurons. A computational energy function is introduced and evaluated in order to prove network stability for asynchronous dynamics. Storage capacity as related to the number of accessible neuron states is also estimated.
Visual criteria for diagnosing diffused liver diseases from ultrasound images can be assisted by computerized tissue classification. Feature extraction algorithms are proposed in this paper to extract the tissue characterization parameters from liver images. The resulting parameter set is further processed to obtain the minimum number of parameters which represent the most discriminating pattern space for classification. This preprocessing step has been applied to over 120 distinct pathology-investigated cases to obtain the learning data for classification. The extracted features are divided into independent training and test sets, and are used to develop and compare both statistical and neural classifiers. The optimal criteria for these classifiers are set to have minimum classification error, ease of implementation and learning, and the flexibility for future modifications. Various algorithms of classification based on statistical and neural network methods are presented and tested. The authors show that very good diagnostic rates can be obtained using unconventional classifiers trained on actual patient data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.