The introduction of solutions conventionally called Industry 4.0 to the industry resulted in the need to make many changes in the traditional procedures of industrial data analysis based on the DOE (Design of Experiments) methodology. The increase in the number of controlled and observed factors considered, the intensity of the data stream and the size of the analyzed datasets revealed the shortcomings of the existing procedures. Modifying procedures by adapting Big Data solutions and data-driven methods is becoming an increasingly pressing need. The article presents the current methods of DOE, considers the existing problems caused by the introduction of mass automation and data integration under Industry 4.0, and indicates the most promising areas in which to look for possible problem solutions.
Agitated Vitex agnus castus L. shoot cultures were established to analyse the content of selected pharmaceutically important flavonoids and phenolic acids. Two variants (selected from nine ones) of MS medium were prepared: A (BAP 1 mg/L; NAA 0.5 mg/L; GA3 0.25 mg/L) and B (BAP 2 mg/L; NAA 0.5 mg/L). The biomass was harvested after 1, 2, 3,4, 5 and 6 weeks. Four‐week cultures (variant A) were selected to perform the precursor feeding experiment. The L‐phenylalanine dose of 1.6 g/L appears to be the most advantageous. Compared to the control cultures, the content of the individual compounds increased in a range from 1.4 to 17.3‐fold (e.g. p‐coumaric acid – 17.3 fold; casticin – 4.8‐fold). The biomass from in vitro cultures is richer in neochlorogenic acid (16‐fold), p‐coumaric acid (5.3‐fold), rutin (2.8‐fold), caffeic acid (1.5‐fold) and cinaroside (1.5‐fold) than the leaves of its parent greenhouse‐cultivated plants. Extracts contained 30 mg/100 g DW of casticin, but after the hydrolysis its amount increased up to 200 mg/100 g DW and twice exceeded the content in the greenhouse leaves. The results indicate that V. agnus castus agitated shoot cultures might be considered as a potential biotechnological source of some pharmaceutically important compounds, especially casticin, rutin, neochlorogenic and p‐coumaric acids.
Enhancement of pool boiling heat transfer can be attained with a number of passive and active techniques. The paper experimentally analyses the impact of laser treatment of the copper surfaces on pool boiling heat transfer of distilled water and ethyl alcohol. The samples were modified with a laser beam to produce longitudinal grooves of highly developed microstructures in the laser textured area. Specimens of different groove depths, groove widths and micro-fin widths were produced. The results indicate a significant influence of laser processing on heat flux dissipated from the surfaces and heat transfer enhancement for all the samples tested. The experimental results have been generalized in the form of a heat flux correlation based on a modified model of enhanced pool boiling heat transfer.
The paper analyses the indoor environment in two modern intelligent buildings located in Poland. Measurements of air and globe temperatures, relative humidity and carbon dioxide concentration in 117 rooms carried out in the space of 1.5 years were presented. Thermal comfort of the occupants has been investigated using a questionnaire survey. Based on 1369 questionnaires, thermal sensation, acceptability and preference votes were analysed in view of their interdependency as well as their dependency on operative temperature, which proved to be very strong. It has been found that the respondents did not completely rate thermal comfort and indoor environment quality as very high, although the overwhelming sensations were positive. Apart from the operation of heating, ventilation and air conditioning (HVAC) systems, this might have also been the cause of individual human factors, such as body mass index, as tested in the study, or the finding that people were generally in favour of a warmer environment. Moreover, thermal environment proved to be the most important element for ensuring the well-being of the occupants.
PartnerTech provides printed circuit board (PCB) assembly on request. Wired elements are assembled in through-hole technology and soldered on the wave soldering machine. The PCB with inserted elements is passed across the pumped wave of melted solder. Typically this process is accompanied by some class of defects like cracks, cavities, wrong solder thickness and poor conductor. In PartnerTech Ltd. another type of defects was observed: dispersion of small droplets of solder around holes. Quality assurance department plans to optimize the process in order to reduce the number of defects. In the first stage, it was necessary to develop a methodology for counting defects. This paper presents experimental design and analysis related to this project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.