Although the mechanical properties of blood vessels have been studied extensively, the shear modulus of the blood vessel wall is still unknown. New data on the shear modulus of elasticity of rat arteries and its variation with axial stretch and blood pressure are presented. The data were obtained from a new instrument designed and constructed by us to perform simultaneous torsion, inflation, and longitudinal stretching tests. It was found under physiological conditions (pressure = 120 mmHg or 16 kPa; longitudinal stretch = 1.2 relative to zero-stress state), the shear modulus of normal rat thoracic aorta is G = 137 +/- 18 kPa. The difference of shear modulus at body temperature (37 degrees C) and room temperature (25 degrees C) is within 10%. The shear modulus varies significantly with changing longitudinal and circumferential strains in proportion to the strain energy due to these strains. A constitutive equation based on a pseudo strain energy function is proposed. The vessel wall is not transversely isotropic in the incremental sense. When the rat was subjected to high blood pressure due to constriction of its aorta, the shear modulus does not vary significantly with the length of time the animal was subjected to hypertension.
The success of converted corals as a bone graft substitute relies on a complex sequence of events of vascular ingrowth, differentiation of osteoprogenitor cells, bone remodeling and graft resorption occurring together with host bone ingrowth into and onto the porous coralline microstructure or voids left behind during resorption. This study examined the resorption rates and bone infiltration into a family of resorbable porous ceramic placed bilaterally in critical sized defects in the tibia1 metaphyseal-diaphyseal of rabbits. The ceramics are made resorbable by partially converting the calcium carbonate of corals to form a hydroxyapatite (HA) layer on all surfaces. Attempts have been made to control the resorption rate of the implant by varying the HA thickness. New bone was observed at the periosteal and endosteal cortices, which flowed into the centre of the defect supporting the osteoconductive nature of partially converted corals. The combination of an HA layer and calcium carbonate core provides a composite bone graft substitute for new tissue integration. The HAxalcium carbonate composite demonstrated an initial resorption of the inner calcium carbonate phase but the overall implant resorption and bone ingrowth behaviour did not differ with HA thickness.
The search for an ideal bone substitute is ongoing. Multiple osteoconductive bone substitutes are available today. Plaster of Paris (POP) (calcium sulfate) has been used for more than 100 years for treatment of skeletal defects. This implant is compared to a new material, hydroxyapatite/calcium carbonate (HA/CC), in a rabbit tibia model. HA/CC is made from partial conversion of coralline calcium carbonate to hydroxyapatite and has an outer hydroxyapatite layer and an inner calcium carbonate core, a combination that leads to faster resorption than that of pure hydroxyapatite. This study compares the histomorphometric and radiographic properties of POP and HA/CC in a rabbit tibial defect. Both implants preferentially restore bone to the cortex relative to the canal. Plaster of Paris was fully resorbed by 6 weeks both radiographically and histometrically and HA/CC was substantially resorbed by 42 weeks. No significant difference was noted in volume fraction of bone between the two implants at 42 weeks postimplantation. Hydroxyapatite/calcium carbonate is a biocompatible bone graft substitute with a rate of resorption significantly slower than plaster of Paris.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.