Acid etching combined with scanning electron microscopy (S.E.M.) accentuates a variety of conodont microstructural patterns as compared to unetched specimens. External and internal organic layers surrounding apatitic lamellae are found with internal organic layers apparently thinner than their external counterparts. This may imply partial removal of the outermost organic layer prior to secretion of the next lamella. Etching also provides evidence of internally preserved striate ornament. Polygonal etch artifacts and zones of crystallites aligned in small areas are interpreted as possible sites for apatite biomineralization.
If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.
About Emerald www.emeraldinsight.comEmerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.
Sea-level rise driven by the effects of greenhouse gas emissions is already driving significant and costly impacts to public and private coastal property owners, with future impacts likely to be immense. We examine legal frameworks in which remedies for these impacts and costs may be addressed. Our analysis focuses on remedies available through application of the common law concepts of nuisance and trespass. We argue that the common law provides mechanisms for restraining future impacts while assigning responsibility for real costs for receptors of these impacts to the generators of the causative pollutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.