The purpose of this study was to examine and describe the neuromuscular changes associated with fatigue using a self-paced cycling protocol of 60-min duration, under warm, humid conditions. Eleven subjects [mean (SE) age 21.8 (0.8) years; height 174.9 (3.0) cm; body mass 74.8 (2.7) kg; maximum oxygen consumption 50.3 (1.8) ml.kg.min-1] performed one 60-min self-paced cycling time trial punctuated with six 1-min "all out" sprints at 10-min intervals, while 4 subjects repeated the trial for the purpose of determining reproducibility. Power output, integrated electromyographic signal (IEMG), and mean percentile frequency shifts (MPFS) were recorded at the mid-point of each sprint. There were no differences between trials for EMG variables, distance cycled, mean heart rate, and subjective rating of perceived exertion for the subjects who repeated the trial (n = 4). The results from the repeated trials suggest that neuromuscular responses to self-paced cycling are reproducible between trials. The mean heart rate for the 11 subjects was 163.6 (0.71) beats.min-1. Values for power output and IEMG expressed as a percentage of that recorded for the initial sprint decreased during sprints 2-5, with normalised values being 94%, 91%, 87% and 87%, respectively, and 71%, 71%, 73%, and 77%, respectively. However, during the final sprint normalised power output and IEMG increased to 94% and 90% of initial values, respectively. MPFS displayed an increase with time; however, this was not significant (P = 0.06). The main finding of this investigation is the ability of subjects to return power output to near initial values during the final of six maximal effort sprints that were included as part of a self-paced cycling protocol. This appears to be due to a combination of changes in neuromuscular recruitment, central or peripheral control systems, or the EMG signal itself. Further investigations in which changes in multiple physiological systems are assessed systematically are required so that the underlying mechanisms related to the development of fatigue during normal dynamic movements such as cycling can be more clearly delineated.
This study examined the effects of cold water immersion (CWI) on recovery of neuromuscular function following simulated team-sport exercise in the heat. Ten male team-sport athletes performed two sessions of a 2 × 30-min intermittent-sprint exercise (ISE) in 32°C and 52% humidity, followed by a 20-min CWI intervention or passive recovery (CONT) in a randomized, crossover design. The ISE involved a 15-m sprint every minute separated by bouts of hard running, jogging and walking. Voluntary and evoked neuromuscular function, ratings of perceived muscle soreness (MS) and blood markers for muscle damage were measured pre- and post-exercise, immediately post-recovery, 2-h and 24-h post-recovery. Measures of core temperature (Tcore), heart rate (HR), capillary blood and perceptions of exertion, thermal strain and thirst were also recorded at the aforementioned time points. Post-exercise maximal voluntary contraction (MVC) and activation (VA) were reduced in both conditions and remained below pre-exercise values for the 24-h recovery (P < 0.05). Increased blood markers of muscle damage were observed post-exercise in both conditions and remained elevated for the 24-h recovery period (P < 0.05). Comparative to CONT, the post-recovery rate of reduction in Tcore, HR and MS was enhanced with CWI whilst increasing MVC and VA (P < 0.05). In contrast, 24-h post-recovery MVC and activation were significantly higher in CONT compared to CWI (P = 0.05). Following exercise in the heat, CWI accelerated the reduction in thermal and cardiovascular load, and improved MVC alongside increased central activation immediately and 2-h post-recovery. However, despite improved acute recovery CWI resulted in an attenuated MVC 24-h post-recovery.
The purpose of this investigation was to examine the effects of voluntary muscular fatigue in one lower limb and determine whether a 'cross-over' of fatigue is evident in the contralateral limb. Twenty-eight subjects (13 males and 15 females) performed a series of voluntary and evoked isometric contractions of both the dominant (exercised) and non-dominant (non-exercised) leg extensor muscles, prior to and after a fatigue protocol consisting of a 100-s sustained maximal isometric contraction (MVC) performed by the dominant limb only. Force values and surface electromyography (EMG) from the vastus lateralis muscle were obtained allowing for the determination of twitch and compound action potential (M-wave) values. Maximal twitch tension and peak-to-peak amplitude were significantly decreased after the fatigue test in the dominant limb, as was maximal voluntary force (approximately 65 N reduction), EMG activity (approximately 0.1 mV decrease) and voluntary activation (approximately 17% decline). However, no significant changes were observed in the non-dominant limb with respect to twitch and M-wave properties nor in MVC force. The voluntary activation of the non-dominant limb decreased significantly by 8.7% after the fatigue test, which was performed only on the dominant limb. The results of the present study suggest that the decrease in force production in the exercised limb was primarily related to peripheral fatigue mechanisms, with central fatigue making a lesser contribution. Centrally mediated mechanisms appear to be the sole contributor to fatigue in the non-exercised limb suggesting an anticipatory fatigue response and a 'cross-over' of central fatigue between the exercised and non-exercised contralateral limb.
It is equivocal whether glycerol hyperhydration improves exercise performance and thermoregulation in the heat. The purpose of this study was to compare the effectiveness of glycerol with water hyperhydration, using a reliable, self-paced variable-intensity cycling protocol under hot, humid conditions. Seven moderately-to-well trained subjects ingested either a solution consisting of 1.2 g kg(-1) body mass (BM) glycerol mixed with 21 ml kg(-1) BM flavoured water (GLY) or placebo (PL), which was flavoured water of equal volume to the GLY trial, 2.5 h before exercise. Following hyperhydration, subjects undertook a self-paced, variable-intensity cycling protocol designed to simulate racing, with the aim being to cycle as great a distance as possible over 60 min. There were no differences in total distance cycled between conditions (29.7+/-5.7 km for PL, 28.9+/-5.7 km for GLY). Power output was not different at any time between conditions. Terminal rectal temperatures were 39.0+/-0.5 degrees C for PL and 38.8+/-0.7 degrees C for GLY and were not significantly different. Heart rate was significantly higher for GLY only during the high-intensity efforts. The sweat rate for GLY was 1.72+/-0.28 l h(-1) (P<0.01) compared with 1.15+/-0.29 l h(-1) for PL. It is concluded that glycerol hyperhydration has no significant advantage over water hyperhydration on performance or thermoregulation during a 1-h, variable-intensity exercise performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.