Increased expression of the ubiquitous serine/threonine protein kinase CK2 has been associated with increased proliferative capacity and increased resistance towards apoptosis. Taurine is the primary organic osmolyte involved in cell volume control in mammalian cells, and shift in cell volume is a critical step in cell proliferation, differentiation and induction of apoptosis. In the present study, we use mouse NIH3T3 fibroblasts and Ehrlich Lettré ascites tumour cells with different CK2 expression levels. Taurine uptake via the Na(+) dependent transporter TauT and taurine release are increased and reduced, respectively, following pharmacological CK2 inhibition. The effect of CK2 inhibition on TauT involves modulation of transport kinetics, whereas the effect on the taurine release pathway involves reduction in the open-probability of the efflux pathway. Stimulation of PLA(2) activity, exposure to exogenous reactive oxygen species as well as inhibition of protein tyrosine phosphotases (PTP) potentiate the swelling-induced taurine loss. Inhibition of PI3K and PTEN reduces and potentiates swelling-induced taurine release, respectively. Inhibition of CK2 has no effect on PLA(2) activity and ROS production by NADPH oxidase, whereas it lifts the effect of PTEN and PTP inhibition. It is suggested that CK2 regulates the taurine release downstream to known swelling-induced signal transducers including PLA(2), NADPH oxidase and PI3K.
Inhibition of the constitutively active casein kinase 2 (CK2) with 2-dimethyl-amino-4,5,6,7-tetrabromo-1H-benzimidasole stimulates the Na(+)-dependent taurine influx via the taurine transporter TauT in NIH3T3 cells. CK2 inhibition reduces the TauT mRNA level and increases the localization of TauT to ER but has no detectable effect on TauT protein expression. On the other hand, CK2 inhibition increases the affinity of TauT towards Na(+ )and reduces the Na(+)/taurine stoichiometry for active taurine uptake. It is suggested that CK2 controls the cellular taurine uptake in unperturbated NIH3T3 cells, i.e., inhibition of CK2 increases the affinity of TauT towards Na(+) and hence Na(+)-dependent taurine uptake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.