The SWI/SNF-Brg1 chromatin remodeling protein plays critical roles in cell-cycle control and differentiation through regulation of gene expression. Loss of Brg1 in mice results in early embryonic lethality, and recent studies have implicated a role for Brg1 in somatic stem cell self-renewal and differentiation. However, little is known about Brg1 function in preimplantation embryos and embryonic stem (ES) cells. Here we report that Brg1 is required for ES cell self-renewal and pluripotency. RNA interference-mediated knockdown of Brg1 in blastocysts caused aberrant expression of Oct4 and Nanog. In ES cells, knockdown of Brg1 resulted in phenotypic changes indicative of differentiation, downregulation of self-renewal and pluripotency genes (e.g., Oct4, Sox2, Sall4, Rest), and upregulation of differentiation genes. Using genome-wide promoter analysis (chromatin immunoprecipitation) we found that Brg1 occupied the promoters of key pluripotency-related genes, including Oct4, Sox2, Nanog, Sall4, Rest, and Polycomb group (PcG) proteins. Moreover, Brg1 co-occupied a subset of Oct4, Sox2, Nanog, and PcG protein target genes. These results demonstrate an important role for Brg1 in regulating self-renewal and pluripotency in ES cells.
Although the dynamics of oscillations of cytosolic Ca2+ concentration ([Ca2+]cyt) play important roles in early mammalian development, the impact of the duration when [Ca2+]cyt is elevated is not known. To determine the sensitivity of fertilization-associated responses [i.e., cortical granule exocytosis, resumption of the cell cycle, Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, recruitment of maternal mRNAs] and developmental competence of the parthenotes to the duration of a [Ca2+]cyt transient, unfertilized mouse eggs were subjected to a prolonged [Ca2+]cyt change for 15, 25, or 50 min by means of repetitive Ca2+ electropermeabilization at 2-min intervals. The initiation and completion of fertilization-associated responses are correlated with the duration of time in which the [Ca2+]cyt is elevated, with the exception that autonomous CaMKII activity is down-regulated with prolonged elevated [Ca2+]cyt. Activated eggs from 25- or 50-min treatments readily develop to the blastocyst stage with no sign of apoptosis or necrosis and some implant. Ca2+ influx into unfertilized eggs causes neither Ca2+ release from intracellular stores nor rapid removal of cytosolic Ca2+. Thus, the total Ca2+ signal input appears to be an important regulatory parameter that ensures completion of fertilization-associated events and oocytes have a surprising degree of tolerance for a prolonged change in [Ca2+]cyt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.