Mammalian SWI/SNF [also called BAF (Brg/Brahma-associated factors)] ATP-dependent chromatin remodeling complexes are essential for formation of the totipotent and pluripotent cells of the early embryo. In addition, subunits of this complex have been recovered in screens for genes required for nuclear reprogramming in Xenopus and mouse embryonic stem cell (ES) morphology. However, the mechanism underlying the roles of these complexes is unclear. Here, we show that BAF complexes are required for the self-renewal and pluripotency of mouse ES cells but not for the proliferation of fibroblasts or other cells. Proteomic studies reveal that ES cells express distinctive complexes (esBAF) defined by the presence of Brg (Brahma-related gene), BAF155, and BAF60A, and the absence of Brm (Brahma), BAF170, and BAF60C. We show that this specialized subunit composition is required for ES cell maintenance and pluripotency. Our proteomic analysis also reveals that esBAF complexes interact directly with key regulators of pluripotency, suggesting that esBAF complexes are specialized to interact with ES cell-specific regulators, providing a potential explanation for the requirement of BAF complexes in pluripotency.BAF complexes Í BAF155 Í Brg E S cells are pluripotent cells capable of both limitless selfrenewal and differentiation into all embryonic lineages. These abilities are conferred by various mechanisms, including transcription factors (1-3), possibly Polycomb complexes (4, 5), microRNAs (6), and histone modification enzymes (7) that work in coordination to maintain the expression of pluripotency genes while repressing lineage-determinant genes. The involvement of such mechanisms in pluripotency has been investigated extensively in recent years (reviewed in ref. 8), but the role of chromatin remodeling enzymes remains unclear.The mammalian genome encodes about 30 SWI2/SNF2-like ATPases, which are assembled into SWI/SNF-like complexes with ATP-dependent chromatin remodeling activity. Of these, Brg and Brm are alternative ATPases of a family of 2-MDa multisubunit SWI/SNF or BAF complexes and make up the prototypic mammalian SWI/SNF-like chromatin remodeling complexes (9, 10). BAF complexes have been shown to be essential for many aspects of mammalian development (11-13). A role of BAF complexes in pluripotency is suggested by observations that deletion of Brg, BAF155 (or Srg3), and BAF47 (or hSNF5) all lead to peri-implantation lethality and failure of the totipotent cells that give rise to both the inner cell mass and trophoblast to survive and grow (14-16). The catalytic ATPase subunit, Brg, also was recovered in screens for factors essential for nuclear reprogramming (17) and to ES cell morphology (18). In addition, ES cells lacking BAF250 have defects in ES cell maintenance and differentiation (19,20). However, the mechanism by which BAF complexes help to establish and maintain pluripotency is not understood.In vitro, BAF complexes use energy generated from ATP hydrolysis to alter DNA-nucleosome contacts (21) and can also e...