The electric field induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor [1-4]. In this scheme an electric field can switch 'on' the ballistic flow of charge and spin along dissipationless edges of the two-dimensional (2D) quantum spin Hall insulator [5-9], and when 'off' is a conventional insulator with no conductive channels. Such a topological transistor is promising for low-energy logic circuits [4], which would necessitate electric field-switched materials with conventional and topological bandgaps much greater than room temperature, significantly greater than proposed to date [6-8]. Topological Dirac semimetals (TDS) are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases [3,10-16]. Here we use scanning probe microscopy/spectroscopy (STM/STS) and angle-resolved photoelectron spectroscopy (ARPES) to show that mono-and bilayer films of TDS Na3Bi [3,17] are 2D topological insulators with bulk bandgaps >400 meV in the absence of electric field. Upon application of electric field by doping with potassium or by close approach of the STM tip, the bandgap can be completely closed then re-opened with conventional gap greater than 100 meV. The large bandgaps in both the conventional and quantum spin Hall phases, much
Electric double layer transistor configurations have been employed to electrostatically dope single crystals of insulating SrTiO3. Here we report on the results of such doping over broad ranges of temperature and carrier concentration employing an ionic liquid as the gate dielectric. The surprising results are, with increasing carrier concentration, an apparent carrier-density dependent conductor-insulator transition, a regime of anomalous Hall effect, suggesting magnetic ordering, and finally the appearance of superconductivity. The possible appearance of magnetic order near the boundary between the insulating and superconducting regimes is reminiscent of effects associated with quantum critical behavior in some complex compounds.
Topological Dirac semimetals (TDS) are three-dimensional analogues of graphene, with linear electronic dispersions in three dimensions. Nanoscale confinement of TDSs in thin films is a necessary step toward observing the conventional-to-topological quantum phase transition (QPT) with increasing film thickness, gated devices for electric-field control of topological states, and devices with surface-state-dominated transport phenomena. Thin films can also be interfaced with superconductors (realizing a host for Majorana Fermions) or ferromagnets (realizing Weyl Fermions or T-broken topological states). Here we report structural and electrical characterization of large-area epitaxial thin films of TDS Na3Bi on single crystal Al2O3[0001] substrates. Charge carrier mobilities exceeding 6,000 cm(2)/(V s) and carrier densities below 1 × 10(18) cm(-3) are comparable to the best single crystal values. Perpendicular magnetoresistance at low field shows the perfect weak antilocalization behavior expected for Dirac Fermions in the absence of intervalley scattering. At higher fields up to 0.5 T anomalously large quadratic magnetoresistance is observed, indicating that some aspects of the low field magnetotransport (μB < 1) in this TDS are yet to be explained.
The stability of the surface of vacuum-cleaved topological insulator Bi 2 Se 3 single crystals is investigated with high-resolution synchrotron-based photoelectron spectroscopy. While the surface is stable at room temperature in vacuum, a Bi 2 layer always forms at the surface of Bi 2 Se 3 upon even brief (5 min) exposure to atmosphere. This is accompanied by a depletion of selenium in the near surface region and a 1.4 eV decrease in work function. The Bi 2 surface is found to be stable upon return to ultrahigh vacuum conditions but is unstable with prolonged exposure to air, ultimately resulting in two possible different reconstructed surfaces, explaining previous contradictory results on long-term atmosphere exposure of Bi 2 Se 3 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.