Advances in cosmic microwave background (CMB) science depend on increasing the number of sensitive detectors observing the sky. New instruments deploy large arrays of superconducting transition-edge sensor (TES) bolometers tiled densely into ever larger focal planes. High multiplexing factors reduce the thermal loading on the cryogenic receivers and simplify their design. We present the design of focal-plane modules with an order of magnitude higher multiplexing factor than has previously been achieved with TES bolometers. We focus on the novel cold readout component, which employs microwave SQUID multiplexing (μmux). Simons Observatory will use 49 modules containing 70,000 bolometers to make exquisitely sensitive measurements of the CMB. We validate the focal-plane module design, presenting measurements of the readout component with and without a prototype detector array of 1728 polarization-sensitive bolometers coupled to feedhorns. The readout component achieves a 95% yield and a 910 multiplexing factor. The median white noise of each readout channel is 65 pA / Hz . This impacts the projected SO mapping speed by <8%, which is less than is assumed in the sensitivity projections. The results validate the full functionality of the module. We discuss the measured performance in the context of SO science requirements, which are exceeded.
The Simons Observatory is a ground-based cosmic microwave background experiment that consists of three 0.4 m small-aperture telescopes and one 6 m Large Aperture Telescope, located at an elevation of 5300 m on Cerro Toco in Chile. The Simons Observatory Large Aperture Telescope Receiver (LATR) is the cryogenic camera that will be coupled to the Large Aperture Telescope. The resulting instrument will produce arcminute-resolution millimeter-wave maps of half the sky with unprecedented precision. The LATR is the largest cryogenic millimeter-wave camera built to date, with a diameter of 2.4 m and a length of 2.6 m. The coldest stage of the camera is cooled to 100 mK, the operating temperature of the bolometric detectors with bands centered around 27, 39, 93, 145, 225, and 280 GHz. Ultimately, the LATR will accommodate 13 40 cm diameter optics tubes, each with three detector wafers and a total of 62,000 detectors. The LATR design must simultaneously maintain the optical alignment of the system, control stray light, provide cryogenic isolation, limit thermal gradients, and minimize the time to cool the system from room temperature to 100 mK. The interplay between these competing factors poses unique challenges. We discuss the trade studies involved with the design, the final optimization, the construction, and ultimate performance of the system.
We quantify the calibration requirements for systematic uncertainties for nextgeneration ground-based observatories targeting the large-angle B-mode polarization of the Cosmic Microwave Background, with a focus on the Simons Observatory (SO). We explore uncertainties on gain calibration, bandpass center frequencies, and polarization angles, including the frequency variation of the latter across the bandpass. We find that gain calibration and bandpass center frequencies must be known to percent levels or less to avoid biases on the tensor-to-scalar ratio r on the order of ∆r ∼ 10 −3 , in line with previous findings. Polarization angles must be calibrated to the level of a few tenths of a degree, while their frequency variation between the edges of the band must be known to O(10) degrees. Given the tightness of these calibration requirements, we explore the level to which residual uncertainties on these systematics would affect the final constraints on r if included in the data model and marginalized over. We find that the additional parameter freedom does not degrade the final constraints on r significantly, broadening the error bar by O(10%) at most. We validate these results by reanalyzing the latest publicly available data from the BICEP2/Keck Array collaboration within an extended parameter space covering both cosmological, foreground and systematic parameters. Finally, our results are discussed in light of the instrument design and calibration studies carried out within SO.
The Simons Observatory is a Cosmic Microwave Background experiment to observe the microwave sky in six frequency bands from 30 to 290 GHz. The Observatory—at ∼5200 m altitude—comprises three Small Aperture Telescopes and one Large Aperture Telescope (LAT) at the Atacama Desert, Chile. This research note describes the design and current status of the LAT along with its future timeline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.