Crimean-Congo Hemorrhagic Fever Virus (CCHFV) causes a life-threatening disease with up to a 40% mortality rate. With no approved medical countermeasures, CCHFV is considered a public health priority agent. The non-neutralizing mouse monoclonal antibody (mAb) 13G8 targets CCHFV glycoprotein GP38 and protects mice from lethal CCHFV challenge when administered prophylactically or therapeutically. Here, we reveal the structures of GP38 bound with a human chimeric 13G8 mAb and a newly isolated CC5-17 mAb from a human survivor. These mAbs bind overlapping epitopes with a shifted angle. The broad-spectrum potential of c13G8 and CC5-17 and the practicality of using them against Aigai virus, a closely related nairovirus were examined. Binding studies demonstrate that the presence of non-conserved amino acids in Aigai virus corresponding region prevent CCHFV mAbs from binding Aigai virus GP38. This information, coupled with in vivo efficacy, paves the way for future mAb therapeutics effective against a wide swath of CCHFV strains.
The recent use of organophosphate nerve agents in Syria, Malaysia, Russia, and the United Kingdom has reinforced the potential threat of their intentional release. These agents act through their ability to inhibit human acetylcholinesterase (hAChE; E.C. 3.1.1.7), an enzyme vital for survival. The toxicity of hAChE inhibition via G-series nerve agents has been demonstrated to vary widely depending on the G-agent used. To gain insight into this issue, the structures of hAChE inhibited by tabun, sarin, cyclosarin, soman, and GP were obtained along with the inhibition kinetics for these agents. Through this information, the role of hAChE active site plasticity in agent selectivity is revealed. With reports indicating that the efficacy of reactivators can vary based on the nerve agent inhibiting hAChE, human recombinatorially expressed hAChE was utilized to define these variations for HI-6 among various G-agents. To identify the structural underpinnings of this phenomenon, the structures of tabun, sarin, and somaninhibited hAChE in complex with HI-6 were determined. This revealed how the presence of G-agent adducts impacts reactivator access and placement within the active site. These insights will contribute toward a path of next-generation reactivators and an improved understanding of the innate issues with the current reactivators.
Research demonstrates the importance of early social interactions in the development of schemas and automatic thoughts. It does not appear, however, that the existing research examines intergenerational correlations in automatic thoughts. As a result, this study explores the relationship between the automatic thoughts of parents and those of their college-age children in a sample of 252 college students and their mothers and fathers. Results of this study suggest that there are significant relationships between parents' and college students' positive automatic thoughts. Different trends by gender also are noted in the relationships among variables for male and female college students with their mothers and fathers. Further, mothers' positive ATs predicted the positive ATs of their college students, with mothers' ratings of their own communication with their college students mediating partially this relationship. Finally, college students' anxiety and self-esteem is predicted significantly by their mothers' anxiety and self-esteem (respectively) as well as their own positive and negative ATs. These findings suggest the possibility that ATs play a role in the intergenerational transmission of certain domains of psychological functioning.
Porcine epidemic diarrhea is a devastating porcine disease that is caused by the alphacoronavirus porcine epidemic diarrhea virus (PEDV). Like other members of the Coronaviridae family, PEDV encodes a multifunctional papain-like protease 2 (PLP2) that has the ability to process the coronavirus viral polyprotein to aid in RNA replication and antagonize the host innate immune response through cleavage of the regulatory proteins ubiquitin (Ub) and/or interferon-stimulated gene product 15 (ISG15) (deubiquitination and deISGylation, respectively). Because Betacoronavirus PLPs have been well characterized, it was sought to determine how PLP2 from the alphacoronavirus PEDV differentiates itself from its related counterparts. PEDV PLP2 was first biochemically characterized, and a 3.1 Å resolution crystal structure of PEDV PLP2 bound to Ub was then solved, providing insight into how Alphacoronavirus PLPs bind to their preferred substrate, Ub. It was found that PEDV PLP2 is a deubiquitinase and readily processes a variety of di-Ub linkages, in comparison with its Betacoronavirus counterparts, which have a narrower range of di-Ub activity but process both Ub and ISG15.
The
threat of a deliberate release of chemical nerve agents has
underscored the need to continually improve field effective treatments
for these types of poisonings. The oxime containing HLö-7 is
a potential second-generation therapeutic reactivator. A synthetic
process for HLö-7 is detailed with improvements to the DIBAL
reduction and ion exchange steps. HLö-7 was visualized for
the first time within the active site of human acetylcholinesterase
and its relative ex vivo potency confirmed against
various nerve agents using a phrenic nerve hemidiaphragm assay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.