The optoelectronic properties of colloidal semiconductor nanocrystals (NCs) can be manipulated by changing their geometric shape. The precise synthetic control over particle morphologies, however, has remained elusive. Conventional growth techniques rely on the kinetic assembly of atomic units, where supersaturation and precipitation processes can lead to a broad distribution of particle shapes. In this paper, we demonstrate that replacing atomic precursors with small-size nanocrystals as building blocks for larger colloids offers an easier, more predictive control over nanoparticle shape evolution. The reported growth strategy is illustrated via shapeselective syntheses of CdSe and CdS NC cubes, spheres, rods, as well as unprecedented "donut" and ring-like structures. Different particle morphologies were obtained through a thermodynamically driven growth, using a distinct combination of coordinating compounds that minimize the surface free energy. The demonstrated aggregative growth is explained using a thermodynamic model for interacting viscous colloids.
Sarcomas constitute a high percentage (∼13%) of cancer‐related deaths among pediatric patients between 0‐19 years of age, with Rhabdomyosarcoma (RMS) being the most common pediatric soft tissue sarcoma and Ewing Sarcoma being the second most common malignant bone tumor in children. Yet, survival for those who develop such metastatic sarcomas remains below 20‐30%. Interestingly, SOX family proteins are known to be up regulated in various cancer types and play a role in cancer progression (tumorigenesis, metastasis, etc.). More specifically, targeted knockdown of SOX18 has been shown to suppress various tumorigenic properties in cancer cell lines including osteosarcoma cells, hepatocellular carcinoma cells and breast cancer cells. Additionally, prior studies showed inhibition of IGFR leads to compensatory pathway activation via other RTK receptors resulting in continued cell survival. Upregulation of SOX18 was observed in such cases. Thus, it is important to clarify the role of SOX18 in RMS and ES. Ewing Sarcoma (ES8) and Rhabdomyosarcoma (RH41) cell lines were infected with shSOX18 to produce knockdown and selected via puromycin resistance. Western blotting and RT‐qPCR was used to analyze baseline and resultant protein and mRNA levels, respectively after knockdown. Results showed that the shRNA was effective in SOX18 knockdown and lead to reduced cell proliferation. Cell migration, cell proliferation and colony formation assays were used to characterize effects of knockdown. Further evaluation of knockdown effects on angiogenesis was analyzed using chick chorioallantoic membrane (CAM) assays. For ES8 and RH41 cell lines, SOX18 knockdown led to reduced cell migration, cell proliferation and colony formation. We anticipate characterization of the role of SOX18 in RMS and ES may inform future development of novel targeted treatments and increased understanding of role of SOX18 in activation of RTK compensatory pathways during IGFR inhibition in pediatric sarcomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.