Background Bone and mineral disorders commonly affect kidney transplant (KTx) recipients and have been associated with a high risk of fracture. Bisphosphonates may prevent or treat bone loss in such patients, but there is concern that these drugs might induce adynamic bone disease (ABD).
MethodsIn an open label, randomized trial to assess the safety and efficacy of zoledronate for preventing bone loss in the first year after kidney transplant, we randomized 34 patients before transplant to receive zoledronate or no treatment. We used dual-energy x-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HR-pQCT), and bone biopsies to evaluate changes in bone in the 32 evaluable participants between the time of KTx and 12 months post-transplant.Results Both groups of patients experienced decreased bone turnover after KTx, but zoledronate itself did not affect this outcome. Unlike previous studies, DXA showed no post-transplant bone loss in either group; we instead observed an increase of bone mineral density in both lumbar spine and total hip sites, with a significant positive effect of zoledronate. However, bone biopsies showed post-transplant impairment of trabecular connectivity (and no benefit from zoledronate); HR-pQCT detected trabecular bone loss at the peripheral skeleton, which zoledronate partially attenuated.Conclusions Current immunosuppressive regimens do not contribute to post-transplant central skeleton trabecular bone loss, and zoledronate does not induce ABD. Because fractures in transplant recipients are most commonly peripheral fractures, clinicians should consider bisphosphonate use in patients at high fracture risk who have evidence of significantly low bone mass at these sites at the time of KTx.
These data provide reference curves from healthy women and demonstrate that density and structural and biomechanical parameters differ between the radius and tibia and between the trabecular and cortical compartments. In postmenopausal women, the trabecular bone remained relatively stable at the tibia site, whereas the cortical compartment changed significantly.
Introduction: The effects of ageing on bone can be mitigated with different types of physical training, such as power training. However, stimuli that combine increasing external and internal loads concomitantly may improve bone quality. The goal of this study was to assess the efficacy of a combined power and plyometric training on lumbar spine and distal tibia microstructure and function. Methods: 38 sedentary elderly women between 60 and 70 years were randomly allocated in experimental (N = 21) and control group (N = 17). The effects of the 20-week protocol on lumbar spine microstructure and tibia microstructure and function were assessed by trabecular bone score (TBS), high resolution peripheral quantitative computed tomography (HR-pQCT) and microfinite element analysis. Results: when compared to the effects found in the control group, the experimental group showed significant improvements in lumbar spine TBS (Hedges' g = 0.77); and in distal tibia trabecular thickness (g = 0.82) and trabecular bone mineral density (g=0.63). Conclusion: our findings underscore the effectiveness of the proposed intervention, suggesting it as a new strategy to slow down and even reverse the structural and functional losses in the skeletal system due to ageing. INDEX TERMS Finite element analysis, HR-pQCT, plyometric training, power training, trabecular bone score.
In XLH patients, DXA measurements must be analyzed with caution due to the interference of anatomic and anthropometric factors. HR-pQCT analysis suggested that XLH primarily affects the cancellous compartment, with the tibia more affected than the radius. Effective treatment of XLH appears to positively affect bone mineralization, mainly in the bone cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.