We present iliac bone histomorphometric data after in vivo double tetracycline labeling and related biochemical data from 14 nonalcoholic men referred for evaluation of symptomatic spinal osteoporosis. Six patients had previously undiagnosed hypogonadism, and 8 had normal gonadal function and no evident etiology for osteoporosis. Bone histomorphometry revealed no differences in structural measurements or resorption indices between the 2 groups. However, compared to reference values for normal postmenopausal women, osteoblast surface, mineralizing surface, and formation rate were normal or modestly increased in the hypogonadal men and significantly reduced in the idiopathic group. There were significant corresponding differences between the 2 groups in the fasting urinary hydroxyproline to creatinine ratio, an index of bone resorption, and serum total alkaline phosphatase, an index of bone formation. Plasma 25-hydroxyvitamin D levels did not differ between the 2 groups and were above 10 ng/mL in all patients. Plasma 1,25-dihydroxyvitamin D [1,25-(OH)2D] levels were normal in the hypogonadal group and significantly reduced in the idiopathic group, but did not correlate with any histological measurements. The formation indices fell substantially in 3 of 4 hypogonadal men after 7-14 months of therapy with testosterone and a calcium supplement. We conclude the following. In vitamin D-replete hypogonadal men with osteoporosis, 1,25-(OH)2D synthesis is normal, and bone remodeling is modestly increased and correctable by hormone replacement therapy, as in normal postmenopausal women. In middle-aged men with idiopathic osteoporosis, there is impairment of 1,25-(OH)2D synthesis and of the recruitment and activity of teams of osteoblasts, as in postmenopausal osteoporosis.
A large scale mutation of the Rhodobacter capsulatus reaction center M-subunit gene, sym2-1, has been constructed in which amino acid residues M205-M210 have been changed to the corresponding L subunit amino acids. Two interconvertable spectral forms of the initial electron donor are observed in isolated reaction centers from this mutant. Which conformation dominates depends on ionic strength, the nature of the detergent used, and the temperature. Reaction centers from this mutant have a ground-state absorbance spectrum that is very similar to wild-type when measured immediately after purification in the presence of high salt. However, upon subsequent dialysis against a low ionic strength buffer or the addition of positively charged detergents, the near-infrared spectral band of P (the initial electron donor) in sym2-1 reaction centers is shifted by over 30 nm to the blue, from 852 to 820 nm. Systematically varying either the ionic strength or the amount of charged detergent reveals an isobestic point in the absorbance spectrum at 845 nm. The wild-type spectrum also shifts with ionic strength or detergent with an isobestic point at 860 nm. The large spectral separation between the two dominant conformational forms of the sym2-1 reaction center makes detailed measurements of each state possible. Both of the spectral forms of P bleach in the presence of light. Electrochemical measurements of the P/P+ midpoint potential of sym2-1 reaction centers show an increase of about 30 mV upon conversion from the long-wavelength form to the short-wavelength form of the mutant. The rate constant of initial electron transfer in both forms of the mutant reaction centers is essentially the same, suggesting that the spectral characteristics of P are not critical for charge separation. The short-wavelength form of P in this mutant also converts to the long-wavelength form as a function of temperature between room temperature and 130 K, again giving rise to an isobestic point, in this case at 838 nm for the mutant. A similar, though considerably less pronounced spectral change with temperature occurs in wild-type reaction centers, with an isobestic point at about 855 nm, close to that found by titrating with ionic strength or detergent. Fitting the temperature dependence of the sym2-1 reaction center spectrum to a thermodynamic model resulted in a value for the enthalpy of the conformational interconversion between the short- and long-wavelength forms of about -6 kJ/mol and an entropy of interconversion of about -35 J/(K mol). Similar values of enthapy and entropy changes can be used to model the temperature dependence in wild-type. Thus, much of the temperature dependence of the reaction center special pair near-infrared absorbance band can be described as an equilibrium shift between two spectrally distinct conformations of the reaction center.
SUMMARYEven the most generalist parasites usually occur in only a subset of potential host species, a tendency which reflects overriding environmental constraints on their distributions in nature. The periodic shifting of these limitations represented by host-switches may have been an important process in the evolution of many host-parasite assemblages. To study such events, however, it must first be established where and when they have occurred. Past host-switches within a group of parasites are usually inferred from a comparison of the parasite phylogeny with that of the hosts. Congruence between the phylogenies is often attributed to a history of association by descent with cospeciation, and incongruence to host-switching or extinction in ‘duplicated’ parasite lineages (which diverged without a corresponding branching of the host tree). The inference of host-switching from incongrucnt patterns is discussed. Difficulties arise because incongruence can frequently be explained by different combinations of biologically distinct events whose relative probabilities are uncertain. Also, the models of host parasite relationships implicit in historical reconstructions may often not allow for plausible sources of incongruence other than host-switching or duplication/extinction, or for the possibility that colonization could, in some circumstances, be disguised by ‘false’ congruence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.