Foodborne pathogens are a major public health threat and financial burden for the food industry, individuals, and society, with an estimated 76 million cases of food-related illness occurring in the United States alone each year. Three of the most important causative bacterial agents of foodborne diseases are pathogenic strains of Escherichia coli , Salmonella spp., and Listeria monocytogenes , due to the severity and frequency of illness and disproportionally high number of fatalities. Their continued persistence in food has dictated the ongoing need for faster, simpler, and less expensive analytical systems capable of live pathogen detection in complex samples. Culture techniques for detection and identification of foodborne pathogens require 5-7 days to complete. Major improvements to molecular detection techniques have been introduced recently, including polymerase chain reaction (PCR). These methods can be tedious; require complex, expensive instrumentation; necessitate highly trained personnel; and are not easily amenable to routine screening. Here, a paper-based analytical device (μPAD) has been developed for the detection of E. coli O157:H7, Salmonella Typhimurium, and L. monocytogenes in food samples as a screening system. In this work, a paper-based microspot assay was created by use of wax printing on filter paper. Detection is achieved by measuring the color change when an enzyme associated with the pathogen of interest reacts with a chromogenic substrate. When combined with enrichment procedures, the method allows for an enrichment time of 12 h or less and is capable of detecting bacteria in concentrations in inoculated ready-to-eat (RTE) meat as low as 10(1) colony-forming units/cm(2).
Ab initio nonadiabatic dynamics simulations are reported for thymine with focus on the S(2) --> S(1) deactivation using the state-averaged CASSCF method. Supporting calculations have been performed on vertical excitations, S(1) and S(2) minima, and minima on the crossing seam using the MS-CASPT2, RI-CC2, MR-CIS, and MR-CISD methods. The photodynamical process starts with a fast (<100 fs) planar relaxation from the S(2) pipi* state into the pi(O)pi* minimum of the S(2) state. The calculations demonstrate that two pi-excited states (denoted pipi* and pi(O)pi*) are actually involved in this stage. The time in reaching the S(2)/S(1) intersections, through which thymine can deactivate to S(1), is delayed by both the change in character between the states as well as the flatness of the S(2) surface. This deactivation occurs in an average time of 2.6 ps at the lowest-energy region of the crossing seam. After that, thymine relaxes to the npi* minimum of the S(1) state, where it remains until the transfer to the ground state takes place. The present dynamics simulations show that not only the pi(O)pi* S(2) trapping but also the trapping in the npi* S(1) minimum contribute to the elongation of the excited-state lifetime of thymine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.