Aim Species assemblages with high proportions of localized taxa occur in regional islands with a history of strong eco‐climatic separation from adjacent systems. Current disturbance in such islands of relictualism or endemism disrupts the distinctive local character in favour of regionally distributed taxa with a wider range of tolerances. However, rehabilitation of the system should restore the localized biota. Thus, we used biogeographical composition to assess progress towards restoration of the dung beetle fauna associated with such an island of endemism following dredge‐mining. Location The study was conducted in natural coastal dune forest and a 23‐year chronosequence of regenerating dune vegetation in the Maputaland centre of endemism, KwaZulu‐Natal, South Africa. Methods Dung beetles were trapped in eight stands of regenerating vegetation of different ages (< 1 year to ~21 years) and in four stands of natural dune forest with differing ecological characteristics defined by measurements of vegetative physiognomy and microclimate. Species groups defined from multivariate analysis of biogeographical distribution patterns and vegetation associations were used to demonstrate quantitative compositional changes in the dung beetle assemblages across the chronosequence to natural forest. Results Three biogeographical groups were defined. One group comprised species widespread in southern Africa or both southern and east Africa. The other two groups were endemic, one to the east coast and the other to Maputaland. There was a general trend from dominance by regionally distributed dung beetle taxa to dominance by locally distributed taxa across the chronosequence of regenerating vegetation from grassland, to open Acacia karroo thicket, to dense A. karroo‐dominated woodland. However, this trend was linked closely to the relative physiognomic and microclimatic similarity between the regenerating vegetation and natural forest. Thus, proportions of locally distributed taxa were lower in older chronosequence woodland (~18–~21 years) with its low canopy cover and open understorey than in dense early chronosequence woodland (~9–~12 years), which is physiognomically and microclimatically closer to species‐diverse natural forest with its dense canopy and understorey. Overall, the present dung beetle community comprises five species groups. Single widespread (21 spp.) and endemic groups (14 spp.) showed similar patterns of association with early chronosequence grassland and open thicket stands. A single widespread (3 spp.) and two endemic shade‐associated groups (3 and 11 spp.) showed differing patterns of association centred, respectively, in late chronosequence woodland, natural forest, or all shaded stands. Main conclusions At 23 years, vegetative regeneration is still at an early stage, but abundant activity of most, although not all species recorded in natural forest, is recovered with the closure of the woodland canopy at ~9 years. Compositional differences with respect to natural forest vary closely with vegeta...
In Maputaland, South Africa vegetative and microclimatic changes on mined dunes drive the composition of the dung beetle fauna toward convergence with that in natural dune forest on unmined dunes. We assessed the pattern of these changes using a 23‐year vegetational chronosequence on mined dunes, which passes from grassland (approximately 1 year) to open Acacia shrubland thicket to Acacia karroo‐dominated woodland (approximately 9 years). Across this sequence, which represents successional stages in the restoration of dune forest, there was a sequential trend toward convergence in dung beetle species composition in both the entire species complement and, particularly, in shade specialist species. However, species abundance patterns showed a trend toward convergence only in early chronosequence Acacia woodland, followed by a decline in similarity between dung beetle assemblages of older Acacia woodland and unmined natural forest. This trend toward divergence was common both to the entire species complement, which includes widespread taxa, and to species endemic to Maputaland or the east coast. These trends in similarity and dissimilarity between dung beetle assemblages closely parallel the greater physiognomic and microclimatic similarity between early Acacia woodland and natural forest and the relative dissimilarity of older Acacia woodland. In conclusion, although percentage similarities between dung beetle assemblages of approximately 12‐year woodland and natural forests were comparable with those between each natural forest stand, decline in similarity in older woodland stands suggests that lasting convergence in dung beetle species abundance will only be attained once the Acacia woodland is replaced by secondary natural forest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.