a v a i l a b l e a t w w w . s c i e n c e d i r e c t . c o m j o u r n a l h o m e p a g e : h t t p : / / w w w . e l s e v i e r . c o m / l o c a t e / t r s t m h Summary Soil-transmitted helminths of the genus Strongyloides (S. fuelleborni and the more prevalent S. stercoralis) are currently believed to infect an estimated 30-100 million people worldwide. The health consequences of S. stercoralis infections range from asymptomatic light infections to chronic symptomatic strongyloidiasis. Uncontrolled multiplication of the parasite (hyperinfection) and potentially life-threatening dissemination of larvae to all internal organs is found among individuals with compromised immune system functions. This paper provides an overview of the current state of the art in relation to diagnostic methods for detecting the infection, the morbidity caused by the infection and the recommended treatment. It further discusses some of the reasons why this infection is so neglected and the consequence of this for the estimated global prevalence. The paper finally points to the gaps in our knowledge and future research needs related to this infection. As Strongyloides infections have the potential to develop into severe disease in certain population subgroups, untreated infections could cause serious problems in the community. Therefore, we need to carefully investigate this parasite in order to develop and implement effective control programmes. REVIEW Strongyloidiasis
fThe TaqMan Array Card (TAC) system is a 384-well singleplex real-time PCR format that has been used to detect multiple infection targets. Here , Shigella/enteroinvasive E. coli (EIEC), protozoa (Cryptosporidium, Giardia lamblia, and Entamoeba histolytica), and helminths (Ascaris lumbricoides and Trichuris trichiura), as well as two extrinsic controls to monitor extraction and amplification efficiency (the bacteriophage MS2 and phocine herpesvirus). Primers and probes were newly designed or adapted from published sources and spotted onto microfluidic cards. Fecal samples were spiked with extrinsic controls, and DNA and RNA were extracted using the QiaAmp Stool DNA minikit and the QuickGene RNA Tissue kit, respectively, and then mixed with AgPath-ID One Step real-time reverse transcription-PCR (RT-PCR) reagents and loaded into cards. PCR efficiencies were between 90% and 105%, with linearities of 0.988 to 1. The limit of detection of the assays in the TAC was within a 10-fold difference from the cognate assays performed on plates. Precision testing demonstrated a coefficient of variation of below 5% within a run and 14% between runs. Accuracy was evaluated for 109 selected clinical specimens and revealed an average sensitivity and specificity of 85% and 77%, respectively, compared with conventional methods (including microscopy, culture, and immunoassay) and 98% and 96%, respectively, compared with our laboratory-developed PCR-Luminex assays. This TAC allows fast, accurate, and quantitative detection of a broad spectrum of enteropathogens and is well suited for surveillance or clinical purposes.
A real-time PCR method targeting the small subunit of the rRNA gene was developed for the detection of Strongyloides stercoralis DNA in faecal samples, including an internal control to detect inhibition of the amplification process. The assay was performed on a range of well-defined control samples (n=145), known positive faecal samples (n=38) and faecal samples from a region in northern Ghana where S. stercoralis infections are highly endemic (n=212), and achieved 100% specificity and high sensitivity. The use of this assay could facilitate monitoring the prevalence and intensity of S. stercoralis infections during helminth intervention programs. Moreover, the use of this assay in diagnostic laboratories could make the introduction of molecular diagnostics feasible in the routine diagnosis of S. stercoralis infections, with a two-fold increase in the detection rate as compared with the commonly used Baermann sedimentation method.
Entamoeba histolytica, Giardia lamblia, and Cryptosporidium are three of the most important diarrhea-causing parasitic protozoa. For many years, microscopic examination of stool samples has been considered to be the "gold standard" for diagnosis of E. histolytica, G. lamblia, and C. parvum infections. Recently, more specific and sensitive alternative methods (PCR, enzyme-linked immunosorbent assay, and direct fluorescent-antibody assay) have been introduced for all three of these parasitic infections. However, the incorporation in a routine diagnostic laboratory of these parasite-specific methods for diagnosis of each of the respective infections is time-consuming and increases the costs of a stool examination. Therefore, a multiplex real-time PCR assay was developed for the simultaneous detection of E. histolytica, G. lamblia, and C. parvum in stool samples. The multiplex PCR also included an internal control to determine efficiency of the PCR and detect inhibition in the sample. The assay was performed on species-specific DNA controls and a range of well-defined stool samples, and it achieved 100 percent specificity and sensitivity. The use of this assay in a diagnostic laboratory would provide sensitive and specific diagnosis of the main parasitic diarrheal infections and could improve patient management and infection control.
Volunteers immunized under chloroquine chemoprophylaxis with Plasmodium falciparum sporozoites (CPS) develop complete, longlasting protection against homologous sporozoite challenge. Chloroquine affects neither sporozoites nor liver-stages, but kills only asexual forms in erythrocytes once released from the liver into the circulation. Consequently, CPS immunization exposes the host to antigens from both preerythrocytic and blood stages, and induced immunity might target either of these stages. We therefore explored the life cycle stage specificity of CPS-induced protection. Twenty-five malaria-naïve volunteers were enrolled in a clinical trial, 15 of whom received CPS immunization. Five immunized subjects and five controls received a sporozoite challenge by mosquito bites, whereas nine immunized and five control subjects received an i.v. challenge with P. falciparum-infected erythrocytes. The latter approach completely bypasses preerythrocytic stages, enabling a direct comparison of protection against either life cycle stage. CPS-immunized subjects (13 of 14) developed anticircumsporozoite antibodies, whereas only one volunteer generated minimal titers against typical blood-stage antigens. IgG from CPS-immunized volunteers did not inhibit asexual blood-stage growth in vitro. All CPSimmunized subjects (5 of 5) were protected against sporozoite challenge. In contrast, nine of nine CPS-immunized subjects developed parasitemia after blood-stage challenge, with identical prepatent periods and blood-stage multiplication rates compared with controls. Intravenously challenged CPS-immunized subjects showed earlier fever and increased plasma concentrations of inflammatory markers D-dimer, IFN-γ, and monokine induced by IFN-γ than i.v. challenged controls. The complete lack of protection against blood-stage challenge indicates that CPS-induced protection is mediated by immunity against preerythrocytic stages. However, evidence is presented for immune recognition of P. falciparuminfected erythrocytes, suggesting memory responses unable to generate functional immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.